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ABSTRACT
We describe a simple randomized construction for generat-
ing pairs of hash functions h1, h2 from a universe U to ranges
V = [m] = {0, 1, . . . , m − 1} and W = [m] so that for ev-
ery key set S ⊆ U with n = |S| ≤ m/(1 + ε) the (random)
bipartite (multi)graph with node set V ] W and edge set
{(h1(x), h2(x)) | x ∈ S} exhibits a structure that is essen-
tially random. The construction combines d-wise indepen-
dent classes for d a relatively small constant with the well-
known technique of random offsets. While keeping the space
needed to store the description of h1 and h2 at O(nζ), for
ζ < 1 fixed arbitrarily, we obtain a much smaller (constant)
evaluation time than previous constructions of this kind,
which involved Siegel’s high-performance hash classes. The
main new technique is the combined analysis of the graph
structure and the inner structure of the hash functions, as
well as a new way of looking at the cycle structure of random
(multi)graphs. The construction may be applied to improve
on Pagh and Rodler’s “cuckoo hashing” (2001), to obtain
a simpler and faster alternative to a recent construction of
Östlin and Pagh (2002/03) for simulating uniform hashing
on a key set S, and to the simulation of shared memory on
distributed memory machines. We also describe a novel way
of implementing (approximate) d-wise independent hashing
without using polynomials.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic algo-
rithms; E.2 [Data Storage Representations]: Hash-
table representations; F.2 [Analysis of Algorithms and

Problem Complexity]: Miscellaneous

General Terms
Theory, Algorithms

Keywords
Random graphs, hash function, cuckoo hashing, uniform
hashing
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1. INTRODUCTION AND OVERVIEW

1.1 Construction of almost random graphs
This paper is concerned with the study of random graphs1

that are generated by pairs of hash functions. We consider
the following scenario, known from various contexts. As-
sume a set S of n keys from a universe U and some range
[m] = {0, 1, . . . , m − 1} are given. Choose two functions h1

and h2 from U to [m] at random, according to some distribu-
tion. Often, the structure of the (random) graph determined
by the edge (multi)set {(h1(x), h2(x)) | x ∈ S} is essential
in the analysis of some algorithm [9, 11, 13, 14, 15, 19].
Slightly different situations result according as one assumes
the node set of the graph is [m] or one considers a bipartite
graph with node set V ] W , where V and W are disjoint
copies of [m]. In this paper, we work with the second option,
and assume that m ≥ (1+ ε)n for some constant ε > 0. The
bipartite graph determined by S, h1, and h2 is denoted by
G(S, h1, h2).

If the edges (h1(x), h2(x)), x ∈ S, are assumed to be fully
random in V ×W , the properties of G(S, h1, h2) can be stud-
ied using known tools from the theory of random graphs [1].
On the other hand, in the context of randomized algorithms
one usually assumes some kind of limited randomness that
can be generated by choosing h1 and h2 from (universal)
hash classes comprising functions with a moderate repre-
sentation size and small evaluation time.

As a technical basis for the further discussion in this intro-
duction, we define the concept of d-wise independent hash
classes and state the properties of Siegel’s hash classes.

�
-wise independent hash classes. The idea of choos-

ing a random hash function from a hash class (i. e., a family
of hash functions), instead of using fixed hash functions,
dates back to 1979, when Carter and Wegman introduced
“universal hash classes” [2]. For d ≥ 2, a universe U and a
range size m, a family H of functions mapping U to [m] is
called a d-wise independent class (of hash functions) if for
h chosen randomly from H the values h(x1), . . . , h(xd) on
d distinct keys x1, . . . , xd are uniformly and independently
distributed over [m]. For constant d ≥ 2 (and m a prime
power) such classes may easily be constructed. For d = 2,
many constructions are known, for d ≥ 3 most standard
constructions involve polynomials of degree < d (e. g., [5]).
Alternatively, the following construction may be used.

1Throughout this paper, the word graph is used in the sense
of multigraph , i. e., there may be multiple edges. Accord-
ingly, when we talk about sets of edges, we mean multisets.



Siegel’s high-performance hash classes. Siegel (in
the technical report version [23] of [22]) gave a construction
to the following effect.

Fact 1. Let 0 < µ < 1 and k ≥ 1 with µk < 1 be given.

Then if ζ < 1 and d ≥ 1 satisfy ζ ≥ 2k
d

+ 1+log d+µ log n
ζ log n

·k (for

n large enough), then there is a way of randomly choosing

a function h : [nk] → [n] such that the following holds: the

description of h comprises O(nζ) words in [n]; h can be

evaluated by XOR-ing together dk/ζ k log n-bit words; the

class formed by all these h’s is nµ-wise independent.

This theorem is based on the fact that there are bipartite
graphs on the node set [nk]][n] with certain expansion prop-
erties; such graphs are proved to exist by the probabilistic
method. The fact that the description of h must contain
a compressed representation of such a graph (so that the
space limit O(nζ) is respected) makes the evaluation time
quite large, although still constant. Note that this construc-
tion does not use polynomials. For other hash classes with
strong randomness properties see [7, 11].

Now we resume the discussion of our basic construction.
Up to now, in applications of the graphs G(S, h1, h2) men-
tioned above one had to assume for the analysis that h1, h2

are chosen from Siegel’s class or related high-performance
hash classes, causing a large (constant) evaluation time. In
this paper we exhibit a simple construction for functions
h1, h2 with constant evaluation time, where the constant is
much smaller than in Siegel’s construction, with the follow-
ing properties: (i) Both can be evaluated as fast as a poly-
nomial with a (small) constant degree; storing the functions
takes space O(nζ), for ζ < 1 an arbitrary constant. (ii)
There is a (polynomially in n−1) small probability that a
“bad” event happens; outside of the bad event the hash val-
ues inside each connected component of G(S, h1, h2) behave
in a fully random way.

Usually, in applications of the (h1, h2)-construction, there
is no interaction between parts of the structure that cor-
respond to different connected components. Thus, for the
analysis of an application for which this is so we may assume
that the graph G(S, h1, h2) is fully random. Technically, we
design a class of pairs of hash functions, by just slightly
extending constructions known from [7], and prove some
new basic facts about the probability space that governs the
structure of the resulting graph. A new way of analyzing
the structure of this graph, especially its cycle structure, in
combination with the inner structure of the underlying hash
functions, is instrumental.

The usefulness of the new result is illustrated by three
applications, as described in the following.

1.2 Cuckoo hashing
Cuckoo hashing was introduced by Pagh and Rodler [19]

as an algorithm for maintaining a dynamic dictionary with
constant lookup time in the worst case. The data structure
consists of two tables T1 and T2 of size m. Given two hash
functions h1 and h2 from U to [m], one maintains the in-
variant that a key x presently stored in the data structure
occupies either cell T1[h1(x)] or T2[h2(x)] (but not both).
Given this invariant and the property that h1 and h2 may
be evaluated in constant time, procedures for lookups and
deletions that run in worst case constant time are obvious.
Pagh and Rodler describe a simple procedure for inserting
a new key x. If cell T1[h1(x)] is empty, then x is placed

there; if this cell is occupied by a key x1 (which necessar-
ily satisfies h1(x1) = h1(x)), then x is put in cell T1[h1(x)]
anyway, and x1 becomes “nestless”. Then, one puts x1 into
cell T2[h2(x1)] in the same way, which may leave another
key x2 (with h2(x2) = h2(x1)) “nestless”. In this case, x2

is placed in cell T1[h1(x2)], and one continues until the key
that is currently nestless can be placed in an empty cell, or
until L replacing steps have been made, for some bound L
chosen beforehand. In the latter case the data structure is
built anew from scratch with new functions h1 and h2, by
newly inserting all keys currently stored in the data struc-
ture, recursively using the same insertion procedure for each
key.

For discussing the time and space requirements, we con-
sider a simple scenario (which may be used in a standard way
to obtain a fully dynamic dictionary). We consider a certain
period in which the dictionary is in operation (a “phase”).
The set of all keys ever stored in the dictionary during the
phase is called S, its cardinality is n. The phase comprises
arbitrarily many lookups and at most ρn update operations,
for a constant ρ; the table size satisfies m ≥ (1 + ε)n, for
ε > 0 a constant. (Due to insertions and deletions, it is usu-
ally not the case that all keys from S are in the dictionary
at the same time.) Pagh and Rodler show that if the hash
functions h1 and h2 are chosen independently from a c log n-
wise independent class, for a suitable constant c > 0, and
if L = Θ(log n) is chosen appropriately, then the amortized
expected time for inserting x is constant. The time analysis
is based on properties of the random graph G(S, h1, h2). For
details see [19]. The analysis is valid in particular if h1 and
h2 are chosen independently from a suitable class of hash
functions built according to Siegel’s construction [22]. Since
these functions exhibit quite a large evaluation time, Pagh
and Rodler asked for simpler hash classes to be used instead.

If we employ our new hash function pairs in cuckoo hash-
ing, we obtain a much more practical version of this elegant
dynamic dictionary with constant lookup time, without ap-
pealing to Siegel’s functions. This means that the evalua-
tion time for the hash functions involved is much smaller (in
terms of constant factors) than in [19]. From experiments in
[19] that used hash classes with simpler functions (but for
which it is not clear whether the analysis carries through)
one already knew that in practice cuckoo hashing is superior
to dynamic perfect hashing [8]; our new result shows that
cuckoo hashing even in a version that can be theoretically
analyzed beats dynamic perfect hashing as far as space re-
quirements go and is at least competitive with respect to
evaluation time.

In a recent development, Fotakis et al. [10] brought down
the space requirement in cuckoo hashing to (1+ε)n by allow-
ing a fixed number d = d(ε) ≥ 2 of hash functions instead of
just two. However, in the analysis it was assumed that the
hash functions are fully random, and it is an open problem
whether Siegel’s functions are sufficient for the analysis to
go through or if even our constructions can be adapted to
that situation.

1.3 Simulating uniform hashing without
Siegel’s functions

By analyzing the cycle structure of the graphs G(S, h1, h2)

generated by functions h1, h2 from Siegel’s class, Östlin and
Pagh [15, 16], in an astonishing development, described a
construction to the following effect. Let U be a finite uni-



verse, let m be some range size, and let n ≤ |U |. There is a
randomized procedure to choose a function h from U to [m]
so that the following holds:

(i) The description of h comprises O(nζ) words from [n],
for some ζ < 1, plus 8n + O(nζ) words from [m];

(ii) evaluating h amounts to evaluating three functions
from Siegel’s class, hence the evaluation time of h is
constant;

(iii) for every given set S ⊆ U of size n there is an event BS

of probability O(n−c) (c an arbitrary given constant),
so that if BS does not occur, the values h(x), x ∈ S,
are independent and uniformly distributed in [m].

That it is possible to simulate full randomness in hash
functions in linear space and with constant evaluation time
(without very complex and space-consuming real-time dic-
tionaries like in [7]) had eluded researchers for many years,
even after Siegel’s construction had appeared. As explained
in [15, 16], Östlin and Pagh’s result implies that the ide-
alizing uniformity assumption in the analysis of classical
hashing schemes like linear probing or double hashing can
be realized by a randomized algorithm, at the cost of O(n)
extra space. Schmidt and Siegel [20, 21] proposed an analy-
sis of double hashing and linear probing based on the weaker
O(log n)-wise independence, but the analysis in particular
of double hashing becomes considerably more complicated
than with full independence [12].

In the present paper, we give a simple construction based
on the random graphs G(S, h1, h2) mentioned above, and
avoiding the use of Siegel’s functions. In an analysis that
takes a different view on the cycle structure of these graphs,
we show that the resulting functions have essentially the
same randomness properties as those from [15, 16], but have
a moderate (constant) evaluation time and smaller, though
still linear, space requirements.

1.4 Shared memory simulations
Many algorithms for distributing shared memory to the

memory modules of a distributed memory machine (DMM)
[11, 14] redundantly store the contents of cell x in several
memory modules given by hash functions h1(x), . . . , ha(x).
In the simplest case, two hash functions h1 and h2 are used.
(E. g., Process 3 in [11] is of this type.) The analysis of such
an algorithm is based on the properties of the random graph
G(S, h1, h2) (where S is the set of shared memory cells ac-
cessed in one step). Up to now, Siegel’s functions had to be
used as basis for analyzing this approach; the new construc-
tion makes it possible to get by with hash functions with
much smaller evaluation time. We expect that our approach
can be extended to more complicated analysis methods like
the witness tree method from [14] (which involves more than
2 hash functions), as long as the edge density of the involved
graphs is not larger than 1/(2(1 + ε)).

1.5 d-wise independence without polynomials
The concept of d-wise independent hash classes (or ap-

proximately d-wise independent classes) is well-studied in
the area of universal hashing. Most known constructions
of d-wise independent classes for d > 2 involve polynomi-
als of degree up to d − 1 over some algebraic structures
like fields or rings [2, 4, 5, 24]. The most notable excep-
tion is Siegel’s class from [23] with functions of a relatively

complex structure and a relatively large evaluation time (in
particular for small d). Complementing the random graph
construction, which uses d-wise independent classes as an
ingredient, we give a new construction of approximately d-
wise independent classes that do not involve polynomials in
the key x, but rather use x only in a linear way. This results
in the construction of an approximately d-independent class
whose functions can be evaluated by one multiplication of
integers of O(d log |U |) bits, some bit operations, and some
table lookups. The drawback is that for range [m] space mζ

is needed, for some constant ζ < 1. In combination with
the results from the first part of the paper we obtain that
almost random graphs can be generated by random exper-
iments involving only one integer multiplication plus some
table lookups, and that for cuckoo hashing and shared mem-
ory simulation such hash functions are sufficient. Uniform
hashing can be simulated by functions that involve two mul-
tiplications of O(log |U |)-bit numbers.

Structure of this paper
In Section 2.1, the definitions of our hash functions are given
and the main theorem is formulated. In Section 3 some
graph theoretical facts and the main theorem are proved.
In Section 4 the application of our results to cuckoo hashing
and the simulation of uniform hashing is described in detail;
the application to shared memory simulation is discussed
briefly. Finally, Section 5 describes the novel construction
of approximately d-wise independent hash classes.

2. ALMOST RANDOM GRAPHS

2.1 Hash classes
Throughout this paper (excepting for Section 5) we as-

sume that for any given U and m we have a d-wise indepen-
dent hash class Hd

m of functions U → [m] at our disposal.
Many constructions of such classes are known, with func-
tions that can be evaluated in constant time (on a RAM),
and which have cardinality O(|U |d) [4, 5, 24]. To be pre-
cise, d-wise independent hash classes of reasonable size are
known to exist only if m is a prime power. For other val-
ues of m there are hash classes which are approximately
d-wise independent in the sense that the probability that
the random vector (h(x1), . . . , h(xd)) takes a certain value
(y1, . . . , yd) ∈ [m]d deviates from 1/md by at most ε/md,
for some small ε > 0. It is no problem to accommodate the
analysis to follow to hash classes that are only approximately
d-wise independent.

For the whole paper, it is convenient to assume that if S ⊆
U is the key set of interest, and |S| = n, then |U | = nO(1). If
this is not the case, the well-known technique of “collapsing
the universe” is used. We use a function h from U to some
auxiliary universe U ′ = [nk] to map S to S′ = h(S) ⊆ [nk].
If h is chosen at random from some 2-independent class, say,
the probability that h is one-to-one on S is 1 − O(1/nk−2),
which is sufficient for all our purposes if the constant k is
chosen large enough.

We define now a class of hash function pairs which is the
basis for our later constructions of almost random bipartite
graphs.



Definition 1. Let d ≥ 2 and r, m ∈ � . For f ∈ Hd
m, g ∈

Hd
r , and z = (z0, . . . , zr−1) ∈ [m]r the hash function hf,g,z :

U → [m] is defined by x 7→ � f(x) + zg(x) � mod m. The hash

class Rd
r,m is the family of all functions hf,g,z. The family

R̂d
r,m consists of all hash function pairs (h1, h2), where hi =

hfi,g,z(i) with f1, f2 ∈ Hd
m, g ∈ Hd

r , and z(1), z(2) ∈ [m]r.

Note that we have not used Rd
r,m ×Rd

r,m in order to define
pairs of hash functions, but that the functions h1, h2 of a
pair from R̂d

r,m share the same g-function. It will turn out
that this “dependence” between the two functions is helpful
for the analysis.

The idea of using classes of hash functions hf,g,z is due to
Dietzfelbinger and Meyer auf der Heide [7], who have thor-
oughly analyzed a hash class very similar to Rd

r,m. Modifica-
tions of such hash classes appeared later in different works
[11, 17]. The analysis of the behaviour of function pairs

from R̂d
r,m on a given key set S is fundamentally different

from previous methods applied to pairs of functions from
Rd

r,m in that we consider the interplay between the inner
structure of these functions and the structure of the graph
G(S, h1, h2). Previous analyses only relied on the strong
randomness properties of the single functions from Rd

r,m or
from Siegel’s class.

2.2 Generating almost random graphs
As mentioned before, we will study the following graphs

generated by hash function pairs.

Definition 2. Let h1, h2 be hash functions U → [m] and

V and W be disjoint copies of [m]. Then each set S ⊆ U de-

fines a bipartite graph G = G(S, h1, h2) = (V ]W, E), where

E = E(S, h1, h2) = ��� h1(x), h2(x) � |x ∈ S � (a multiset).

Our main result indicates that the distribution of graphs
G(S, h1, h2), if the pair (h1, h2) is chosen randomly from

R̂d
r,m, is in several aspects similar to that of perfectly ran-

dom bipartite graphs with |S| edges.
In order to state the main result precisely, we need some

graph theoretical definitions. (See, e.g., [3], for basic notions
in graph theory.) Let G = (V,E) be a connected graph.
We identify each simple cycle and each simple path of G
with the set of its edges. The length of a path or a cycle
is the number of edges it contains. Note that since we are
considering graphs with multiple edges there may be simple
cycles of length 2 (but no loops, since all our graphs are
bipartite). We define an important property of (connected)
graphs.

Definition 3. Let G = (V,E) be a connected graph. Let

T ⊆ E be an arbitrary spanning tree of G. The cyclomatic
number of G is |E| − |T |, the number of edges of G not in

T .

Since a spanning tree of a connected n-node graph has n−1
edges, the following is obvious:

Lemma 1. The cyclomatic number of a connected graph

with n vertices and m edges is m − n + 1.

Note that each edge e ∈ E−T together with T determines a
unique simple cycle in G (the fundamental cycle of e w. r. t.
T ). It is well known that every cycle in G may be ob-
tained from the fundamental cycles by repeatedly applying
the XOR operation on edge sets, see [3].

We are especially interested in those graphs G =
G(S, h1, h2) for which the cyclomatic number of each
connected component is bounded by a constant. In Sec-
tion 4.2 we will show how any such graph leads to a hash
class which is uniform on S. Moreover, for cuckoo hashing
to be successful on S a function pair (h1, h2) is needed so
that the cyclomatic number of every connected component
of G(S, h1, h2) is bounded by 1, i. e., each connected compo-
nent contains at most one cycle. Another desirable property
of the random distribution of G is that the expected length
of the longest simple path starting at an arbitrary vertex
is bounded by a constant, because for cuckoo hashing, the
length of the longest simple path starting at h1(x) is an
upper bound on the insertion time of x.

A bipartite graph with (1 + ε)n nodes on each side whose
n = |S| edges are placed completely at random has these
properties with high probability. Our main result, to be for-
mulated next, says that these properties are also obtained
with high probability if (h1, h2) are chosen randomly from

R̂d
r,m. For each set S, our analysis is only valid for a sub-

set R(S) of “good” hash function pairs from R̂d
r,m, but this

causes no problem in applications because a randomly cho-
sen pair is good with high probability. In the proof, the hash
function pairs that are not “good” will be identified.

Theorem 1. Let ε > 0 and ` ≥ 1 be fixed and let m =
m(n) = (1 + ε)n. For any set S ⊆ U , |S| = n, there exists

a set R(S) of “good” hash function pairs in R̂2`
r,m such that

for randomly chosen (h1, h2) ∈ R̂2`
r,m the following holds.

(a) Prob � (h1, h2) ∈ R(S) � ≥ 1 − n/r`.

(b) For every constant q ≥ 2 the probability that (h1, h2) ∈
R(S) and that there is a connected subgraph of

G(S, h1, h2) whose cyclomatic number is at least q
is O � n1−q � .

(c) For every key x ∈ S, the probability that (h1, h2) ∈
R(S) and that in the graph obtained from G(S, h1, h2)
by removing the edge (h1(x), h2(x)) the vertex h1(x) is

the endpoint of a simple path of length t is bounded by

(1 + ε)−t.

3. PROOF OF THE MAIN THEOREM

3.1 Some graph theoretical observations
Recall the definition of the cyclomatic number of a graph

G. An edge e is called a leaf edge if it has an endpoint with
degree 1; the non-leaf edges are called inner edges. An edge
is called a cycle edge if it lies on a cycle.

Our goal is to determine upper bounds on the probability
that a randomly determined bipartite graph is isomorphic
to a fixed connected graph with a given cyclomatic number
(and a given number of leaf edges). In order to achieve this,
we need an upper bound on the number of such graphs.
Let N(k, `, q) be the number of non-isomorphic connected
graphs whose cyclomatic number is q and which have k − `
inner edges and ` leaf edges. (By Lemma 1, such graphs
have k − q + 1 nodes.) Further, let N∗(k, p) be the number
of non-isomorphic connected graphs with k edges, p of which
are either cycle or leaf edges.



Lemma 2.

(a) N(k, `, 0) ≤ k2`−4.

(b) N(k, `, q) = kO(`+q).

(c) N∗(k, p) = kO(p).

Proof. (a) In case q = 0 the graphs are trees. Any
tree with k − ` inner edges and ` ≥ 2 leaf edges can be
constructed in the following way. One starts with a path of
length k2 ∈ [2, k− (`−2)], called G2 (the index refers to the
number of leaf edges in the graph). Then for i = 3, . . . , `,
one constructs Gi from Gi−1 by taking a new path of length
ki ≥ 1 such that k2 + · · · + ki ≤ k − (` − i) and identifying
one endpoint of this path with an arbitrary vertex in Gi−1.
The length k` of the last path is uniquely determined by
k` = k− (k2 + · · ·+k`−1). There are fewer than k`−2 choices
for picking the lengths k2, . . . , k`−1. Furthermore, in each
of the `− 2 steps, where Gi is constructed from Gi−1, there
are fewer than k possibilities for the vertex at which the new
path is attached. Hence, N(k, `, 0) is bounded by k2`−4.

(b) The case q = 0 was treated in (a). Now let q > 0 and
consider the connected graphs G with k−` inner edges and `
leaf edges and cyclomatic number q. Note that Definition 3
implies that starting with G we can remove q cycle edges
in such a way that a spanning tree is left. This tree has
`′ ≤ `+2q leaf edges. Since each of the q cycle edges has no
more than k2 possibilities for its endpoints, we may use (a)
to estimate

N(k, `, q) ≤ k2q · N(k − q, `′, 0)

≤ k2q · (k − q)2`+4q−4.

(c) Let N∗(k, p, q) be the number of non-isomorphic con-
nected graphs whose cyclomatic number is q and which have
k edges, p of which are either cycle edges or leaf edges.
Clearly, N∗(k, p, 0) = N(k, p, 0) ≤ k2p−4, by (a). For q > 0
consider all connected graphs G with k edges, p of which
are either cycle edges or leaf edges, and cyclomatic number
q. Just as in the proof of part (a), from such a graph G
we may remove q cycle edges one after another to obtain a
spanning tree T with k − q edges. Now note that if an edge
e′ becomes a leaf edge when the cycle edge e is removed,
then e′ must lie on the fundamental cycle created by e and
T . This means that all leaf edges in T were cycle edges or
leaf edges in G, hence T has no more than p − q leaf edges.
(Note that it is in fact possible that p− q leaf edges remain,
if the original graph contains no leaf edges and all cycles are
2-cycles.) As before, the number of ways to place the q cycle
edges is bounded by k2q, hence, by (a),

N∗(k, p, q) ≤ k2q · N∗(k − q, p − q, 0)

= k2q · N(k − q, p − q, 0)

≤ k2q(k − q)2(p−q)−4 < k2p−4.

Summing up the upper bound for N∗(k, p, q) for all 0 ≤ q ≤
k yields the claimed upper bound on N∗(k, p).

We can now state an upper bound on the probability that a
(truly) random bipartite graph is isomorphic to a connected
graph with a given cyclomatic number. Let as in Definition 2
G = G(S, h1, h2) be the bipartite graph determined by two
hash functions U → [m] and a set S ⊆ U . For T ⊆ S let
K(T ) = G(T, h1, h2) be the subgraph of G consisting of the

edges that belong to keys in T , disregarding the isolated
nodes. We assume that each edge (h1(x), h2(x)), x ∈ T , in
the graph K(T ) is labeled with the key x. We say that two
graphs H = (VH , EH) and H ′ = (VH′ , EH′) with labeled
edges are isomorphic if there are bijections σ : VH → VH′

and τ : EH → EH′ (as multisets) such that if e ∈ EH

connects v, w ∈ VH , then τ(e) connects σ(v), σ(w), and such
that for all e ∈ EH the labels of e and τ(e) are the same.

Lemma 3. Let T ⊆ U , and H = (VH , EH) be a bipartite,

connected graph, where each edge is labeled with a unique

element in T . If the values hi(x) are chosen fully randomly

for all x ∈ T, i ∈ {1, 2}, then the probability that K(T ) is

isomorphic to H is at most 2 · m−|EH |−q+1, where q is the

cyclomatic number of H.

Proof. Consider a vertex v of the graph H that is ad-
jacent to d edges marked with x1, . . . , xd ∈ S. If H is iso-
morphic to K(T ), then there exists i ∈ {1, 2} such that
hi(x1) = · · · = hi(xd). Since H is bipartite and connected,
there is exactly one way to split VH into color classes UH

and WH such that E ⊆ UH ×WH . Thus, there are two ways
to color the vertices with colors 1 and 2. The probability
that K(T ) is isomorphic to H is bounded by the probability
that there exists a coloring of the vertices of H such that for
all vertices v we have the following: if v is colored i and v is
incident to edges labeled with x1, . . . , xdv ∈ S then we have
hi(x1) = · · · = hi(xdv ). The probability that this is true for
one node v is exactly m−dv+1, due to the independence of all
random values hi(x). Hence, taking the two possible ways
of coloring the vertices into account, the probability that H
is isomorphic to K(T ) is at most 2 · � v∈VH

m− deg(v)+1 =

2 · m|VH |−D, where D = � v∈VH
deg(v) = 2|EH |. The

claim now follows from |VH | = |EH | − q + 1 as stated in
Lemma 1.

3.2 Bad subgraphs
Now we turn to the situation that underlies Theorem 1,

i. e., we consider the graphs generated by choosing a pair
(h1, h2) of hash functions from R̂d

r,m, see Definition 1. (Re-
call that each hash function hi = hfi,g,z(i) is determined by

d-wise independent hash functions fi and g and a vector z(i)

of random offsets by hi(x) = � fi(x) + z
(i)

g(x) � mod m.) The

statements made in Theorem 1 refer to a partition of R̂d
r,m

into a set R(S) containing pairs which are “good” for S and
the remaining pairs which are “bad”. We identify now the
set of good hash function pairs.

Definition 4. Let S ⊆ U .

(a) For T ⊆ S, the set R∗(T ) consists of those hash

function pairs (h1, h2) whose g-component satisfies

|g(T )| ≥ |T | − `. 2

(b) G = G(S, h1, h2) is `-bad if there exists a subset T ⊆ S
such that K(T ) is connected and (h1, h2) 6∈ R∗(T ).

(c) R(S) ⊆ R̂2`
r,m is the set of those hash function pairs

(h1, h2) for which the graph G(S, h1, h2) is not `-bad.

2If one regards g as a hash function from U to r that maps
keys to “buckets” 0, 1, . . . , r − 1, then this means that the
keys in T cover at least |T | − ` buckets of g, that means, g
distributes the keys of T rather well.



We can now formulate a quite general statement that cap-
tures a central property of R∗(T ). It makes precise the idea
that in the random graphs G(S, h1, h2) everything inside the
connected components is practically random. This result is
also a building block of the proof of Theorem 1, which will
be given in the next section.

Theorem 2. As in Theorem 1, let ε > 0 and ` ≥ 1 be

fixed, let m = (1 + ε)n, and consider some S ⊆ U , |S| = n.

Define R(S) ⊆ R̂2`
r,m as above. Then for each subset T ⊆

S the set R∗(T ) of hash function pairs has the following

properties:

(a) If (h1, h2) ∈ R(S) and the edge set K(T ) =
{(h1(x), h2(x)) | x ∈ T} is contained in a connected

component of G = G(S, h1, h2), then (h1, h2) ∈ R∗(T ).

(b) If (h1, h2) is chosen at random from R∗(T ) then

(h1(x), h2(x)), x ∈ T , is uniformly and independently

distributed in [m]2.

Put a little more informally, this means that if we are in-
terested in the behaviour of the hash functions (h1, h2) on
arbitrary key sets T , but only as long as all edges labeled
with keys from T lie in the same connected component,
then for each T only the subset R∗(T ) of the hash func-
tion pairs is of interest. Within this set the random ex-
periment for choosing (h1, h2) distributes the edges fully
randomly, with the possible exception of the intersection
R∗(T )∩ � R̂2`

r,m −R(S) � ⊆ R̂2`
r,m −R(S), a set not depending

on T , which in Theorem 1 is shown to be very small.

3.3 The proofs

Proof of Theorem 2. (a) Suppose for a contradic-
tion that (h1, h2) /∈ R∗(T ), i. e., |g(T )| < |T | − `. By
assumption, K(T ) is contained in a connected component
K ′ of G, which can be written K ′ = K(T ′) for some T ′ with
T ⊆ T ′. Obviously, then |g(T ′)| < |T ′| − `, which means
that G(S, h1, h2) is `-bad, contradicting the assumption
that (h1, h2) is in R(S).

(b) Assume that (h1, h2) is chosen randomly from
R∗(T ), i. e., from the set of function pairs for which
|g(T )| = |T | − `′ for some `′ ≤ `. First we fix such a
g. Then we can pick |T |− `′ keys from T such that they are
all hashed by g into different buckets while the remaining
`′ keys are hashed into at most `′ of these buckets. Hence,
we can partition T into two sets T1, T2 such that |T1| = `′,
|g(T2)| = |T2| = |T | − `′, and g(T1) ⊆ g(T2). Let T ′

2 ⊆ T2 be
the set of at most `′ keys for which g(T1) = g(T ′

2), and note
that |T1∪T2| ≤ 2`. We now choose f1 and f2 and the random

offsets in a particular order. First choose the offsets z
(1)
i and

z
(2)
i randomly for all i ∈ g(T1), and assume they are fixed.

Then still, the hash values h1(x) = � f1(x) + z
(1)

g(x) � mod m

and h2(x) = � f2(x) + z
(2)

g(x) � mod m for x ∈ T1 ∪ T ′
2

are distributed independently and uniformly in [m] be-
cause f1 and f2 are 2`-wise independent. Now note that
g(T2 − T ′

2) ∩ g(T1 ∪ T ′
2) = ∅, and that |g(T2)| = |T2|. Hence

the offsets z
(j)
i with j ∈ {1, 2} and i ∈ g(T2 − T ′

2) can now
be chosen independently from each other and from those
with i ∈ g(T1 ∪ T ′

2). This implies that also the hash values
hi(x) with i ∈ {1, 2} and x ∈ T2 − T ′

2 are distributed inde-
pendently and uniformly, and also independently from the
values for x ∈ T1 ∪ T ′

2.

Lemma 4. Let G = G(S, h1, h2). If G is `-bad, then there

exists a subset T ⊆ S such that |g(T )| = |T | − `, K(T ) is

connected, and the total number of leaf and cycle edges in

K(T ) is at most 2`.

Proof. Let T ⊆ S and K = K(T ). An edge
(h1(x), h2(x)) in K is called special if there is some
other key x′ ∈ T , x 6= x′, such that g(x) = g(x′).

Since G is `-bad, there is some set T ⊆ S such that K =
K(T ) is connected and |g(T )| < |T | − `. We iteratively
delete keys from T , and the corresponding edges from K, as
long as this can be done in such a way that the remaining
subgraph K ′ = K(T ′) is connected and for the remaining
set T ′ of keys we have |g(T ′)| ≤ |T ′| − `.

When this process stops with a key set T ′ remaining then
all leaf edges and all edges in cycles must be special because
non-special leaf or cycle edges would have been removed by
the process. Further, |g(T ′)| = |T ′| − ` because otherwise
one could remove one special leaf or cycle edge. This implies
that there is a subset T ′′ ⊆ T ′ of size ` such that each key in
T ′′ collides under g with a key not in T ′′, while all the keys
in T ′ − T ′′ are hashed by g into different buckets. Hence,
exactly the edges corresponding to keys in T ′′ and at most
|T ′′| edges corresponding to keys in T ′ are special. Thus,
K ′ = K(T ′) has at most 2` special edges. To conclude,
K(T ′) contains at most 2` leaf and cycle edges and |g(T ′)| =
|T ′| − `.

Proof of Theorem 1. (a) We mark each edge
(h1(x), h2(x)), x ∈ S, of G = G(S, h1, h2) with the corre-
sponding key x. If G is `-bad, then according to Lemma 4
there exists a subset T ⊆ S such that |g(T )| = |T | − ` and
K(T ) contains at most 2` leaf and cycle edges.

Let H be a connected bipartite graph with k edges which
are marked uniquely with the elements from a k-element set
T ⊆ S. Further, let H have at most 2` leaf and cycle edges.
We bound the probability of the event I(H), which is that
K(T ) is isomorphic to H and that |g(T )| = |T | − `.

If |g(T )| = |T | − `, then T can be partitioned into two
disjoint subsets T1, T2 such that |g(T2)| = |T2| = |T |− ` and
g(T1) ⊆ g(T2). In this case there is a subset T ′

2 ⊆ T2 with
1 ≤ |T ′

2| ≤ ` such that g(T1) = g(T ′
2) and |g(T ′

2)| = |T ′
2|.

There are fewer than k2` possibilities to choose the subsets
T1 and T ′

2 of T , and due to the 2`-wise independence the
probability of g(T1) = g(T ′

2) and |g(T ′
2)| = |T ′

2| is bounded

above by (|T ′
2|/r)|T1| ≤ (`/r)`. Hence, the probability that

|g(T )| = |T | − ` is bounded by (k2`/r)`.
If this event occurs, then the hash values hi(x) with x ∈ T

and i ∈ {1, 2} are independently and uniformly distributed
which can be verified along the lines of the proof of Theo-
rem 2 (b). Hence, in this case, according to Lemma 3 the
probability that K(T ) is isomorphic to H is at most 2m−k+1.
Overall, we obtain

Prob � I(H) � ≤ (k2`/r)` · 2m−k+1 .

According to Lemma 2, there are N∗(k, p) = kO(p) possi-
bilities to choose a bipartite graph H with k edges among
which there are p leaf and cycle edges. Since ` is a constant,
there are kO(1) possibilites to choose H in such a way that it
contains at most 2` leaf and cycle edges. Furthermore, there
are fewer than nk ways to choose the set T of k keys and
to mark the edges of H uniquely with the elements from T .
Summing over all k, we obtain the following upper bound



on the probability that G(S, h1, h2) is `-bad:

Prob � ∃H : I(H) � =

n�
k=2

kO(1)nk(k2`/r)` · 2m−k+1

= r−`·
n�

k=2

kO(1) nk

mk−1
=

n

r`
·

n�
k=2

kO(1)

(1 + ε)k−1
= O � n

r` � .

(b) If G = G(S, h1, h2) contains a connected component
with cyclomatic number at least q, then there is a connected
subgraph H of G whose cyclomatic number is q and which
does not contain any leaf edges. This subgraph can be ob-
tained by repeated deletion of cycle edges until the cyclo-
matic number is q (Lemma 1 implies that the deletion of a
cycle edge reduces the cyclomatic number by 1) and after-
wards by repeated deletion of leaf edges until no leaf edges
remain. Note that deleting a leaf or a cycle edge does not
destroy connectivity.

We prove the claimed probability bound for the event that
(h1, h2) ∈ R(S) and that there exists a subset T ⊆ S of the
keys such that K(T ) is a connected subgraph of G with
cyclomatic number q and which does not contain any leaf
edges. According to Theorem 2 (a), the subgraph K(T ) can
only be connected for (h1, h2) ∈ R(S) if (h1, h2) ∈ R∗(T ).
Hence, by Theorem 2 (b) it suffices to bound the probability
that there is T ⊆ S such that K(T ) is connected, contains
no leaf edges, and has cyclomatic number q under the as-
sumption that all edges of K(T ) are chosen completely at
random.

There are N(k, 0, q) = kO(1) (see Lemma 2(b)) possibili-
ties to choose a connected bipartite graph with k edges, no
leaves, and cyclomatic number q. There are fewer than nk

possibilities to choose T ⊆ S, |T | = k, and to label the edges
of H with the elements in T . Hence, according to Lemma 3
the probability that there exists T ⊆ S, |T | = k, such that
K(T ) is isomorphic to a graph with cyclomatic number q

and no leaf edges is bounded by kO(1) ·nk ·2m−k−q+1. Sum-
ming over all possible values of k we obtain an upper bound
of

n�
k=q+1

nkkO(1)m−k−q+1 = n−q+1
n�

k=q+1

kO(1)

(1 + ε)k+q−1

for the probability that (h1, h2) ∈ R(S) and that G has a
connected component with cyclomatic number at least q.
Since this is O(n−q+1), the claim follows.

(c) If h1(x) is the endpoint of a simple path of length t
that does not contain the edge e = (h1(x), h2(x)), then there
exist t elements x1, . . . , xt ∈ S − {x} such that the path
consists of the edges e1, . . . , et, where ei = (h1(xi), h2(xi)).
Let x0 = x. Since h1(x0) and h1(x1) are both endpoints of
e1, and ei is adjacent to ei+1, we have h1(x0) = h1(x1) ∧
h2(x1) = h2(x2) ∧ . . . . More precisely,

∀0 ≤ i ≤ t − 1 : hi mod 2+1(xi) = hi mod 2+1(xi+1). (1)

Hence we have to bound the probability that (1) is
true and (h1, h2) ∈ R(S). Let T = {x0, x1, . . . , xt} and
note that the event (1) may occur only if K(T ) is con-
nected. Hence, similar as in the proof of part (b), it suf-
fices according to Theorem 2 to bound the probability of
(1) under the assumption that the random values hi(x),
x ∈ T = {x0, x1, . . . , xt}, i ∈ {1, 2}, are all independently
and uniformly distributed. In this case the probability
of (1) is exactly m−t. Since there are fewer than nt possible

choices for x1, . . . , xt, the probability that such a path exists
and (h1, h2) ∈ R(S) is at most (n/m)t = (1 + ε)−t.

4. APPLICATIONS

4.1 Cuckoo hashing without Siegel’s functions
In this section we show that a variant of the analysis of

cuckoo hashing given in [19] remains valid if function pairs

from R̂4
r,m are used. We consider the version of the cuckoo

hashing data structure as described in Section 1.2, and ana-
lyze its operation during a phase that comprises ρn update
operations. Here, ρ > 0 is constant, and n ≥ |S| for the set
S ⊆ U that consists of all keys that are stored in the table at
any time during the phase. All hash function pairs (h1, h2)

are chosen at random from R̂4
r,m, where m = (1 + ε)n and

r = mδ , 1
2

< δ < 1 constant. The bound L is chosen to
be Θ(log n). The phase starts with some set of keys being
stored in the dictionary according to some hash function pair
(h1, h2). In the analysis, we disregard lookup and deletion
operations. Our aim is to show that if we perform the inser-
tion operations by the procedure described in Section 1.2,
then the expected time for these insertions is O(n).

We split the phase into subphases. The first subphase
starts with the beginning of the phase, subsequent subphases
start whenever a new pair (h1, h2) of hash functions is chosen
(and the data structure is built anew). Thus a subphase is
exactly the lifespan of a hash function pair.

Lemma 5. The total time spent for insertions during a

subphase is O(n log n) in the worst case.

Proof. The insertion procedure aborts and starts a new
subphase after L keys have become nestless in one attempt
to insert a key. Thus no insertion attempt takes longer than
O(log n) time; and even if the dictionary is built anew, no
more than (1 + ρ)n keys are inserted in a subphase.

Lemma 6. The expected number of subphases is

1 + O(n/r2).

Proof. It is sufficient to show that for each subphase
the probability that it ends before the end of the phase is
bounded by O(n/r2). Let (h1, h2) be the pair of hash func-
tions used in the subphase. The probability that (h1, h2) /∈
R(S) is O(n/r2), by Theorem 1(a). Thus, we can assume
that (h1, h2) ∈ R(S). We have to estimate the probability
that the subphase ends prematurely. For this to happen,
there must be a key x inserted during the subphase that
causes a sequence of L “nestless” keys. For this, there are
two possibilities:
Case 1: The set of edges in G(S, h1, h2) determined by
these nestless keys forms a subgraph with cyclomatic num-
ber q ≥ 2. Then it is immediate that G(S, h1, h2) has
a connected component with cyclomatic number q. The-
orem 1(b) implies that the probability that this happens
(while (h1, h2) ∈ R(S)) is O(n−1) = O(n/r2).
Case 2: The set of edges in G(S, h1, h2) determined by
these L nestless keys determines a subgraph with cyclo-
matic number at most 1. It is then easy to see, similarly
as in the corresponding proof in [19, Section 3.1], that this
subgraph contains a simple path starting at node h1(x)
or at h2(x) of length (L − 1)/3, which does not contain
the edge (h1(x), h2(x)) corresponding to x. Theorem 1(c)
says that the probability that this happens is bounded by



2(1 + ε)−(L−1)/3. If we let L ≥ 6dlog1+ε(n)e + 1, this is at

most 2n−2. Thus the probability that this occurs for some

key x is at most 2(1 + ρ)n−1 = O(n/r2).

Lemmas 5 and 6 imply that the expected time spent in
subphases that end prematurely (i. e., all excepting the last
subphase) is O((n/r2) · n log n) = o(n). Further, arguing
in exactly the same way we see that the expected time we
spend in a last subphase that uses a pair (h1, h2) /∈ R(S)
is O((n/r2) · n log n) = o(n). This means that from here
on we may concentrate on the last subphase, in which all
insertions are successfully completed, and may assume that
a hash function pair (h1, h2) ∈ R(S) is used. We can argue
just as in [19, Section 3.1]: For each key x inserted during
this subphase we have the following: If it creates a sequence
of t or more nestless keys, then G(S, h1, h2) contains a sim-
ple path of length at least (t − 1)/3, starting with h1(x) or
at h2(x), and not containing the edge (h1(x), h2(x)). The
probability for this to happen is (assuming (h1, h2) ∈ R(S))

bounded by 2(1+ ε)−(t−1)/3, by Theorem 1(c). This implies
that the expected number of nestless keys generated during
the insertion of x is at most � t≥1 2(1 + ε)−(t−1)/3 = O(1),

hence the expected insertion time is O(1) in this case. —
Thus we have proved the following theorem.

Theorem 3. Assume that (h1, h2) is chosen at random

from R̂4
r,m, where m = (1 + ε)n and r = mδ, for 1

2
< δ < 1

constant. Assume further that a phase involving at most n
keys and ρn updates is run as described. Then lookups and

deletions can be carried out in worst case constant time, and

insertions in amortized expected constant time.

4.2 Uniform hashing
In this section we show how we can exploit the property

of our random graphs G(S, h1, h2) to have a constant bound
on the cyclomatic number of each connected component in
order to simulate uniform hashing on S.

Let in the following t ≥ 1 and let ⊕ be an arbitrary group
operation over [t] (e.g. addition modulo t).

Definition 5. Let m ∈ � and h1, h2 : U → [m]. For a

vector φ = (φ1, . . . , φm) of m hash functions U → [t] and a

vector λ = (λ1, . . . , λm) of m offsets in [t] the hash function

α := αh1,h2,φ,λ : U → [t] is defined by

α(x) = φh1(x)(x) ⊕ λh2(x).

For each pair (h1, h2) and c ≥ 2 the hash class Fc,h1,h2 con-

sists of all hash functions α = αh1,h2,φ,λ, where φ1, . . . , φm ∈
Hc

t and λ1, . . . , λm ∈ [t].

The behaviour of a function chosen at random from the
class Fc,h1,h2 on S ⊆ U is best described in our graph the-
oretical setting from above. Consider the bipartite graph
G = G(S, h1, h2) = (V ]W, E), where V and W are disjoint
copies of [m]. With each vertex v ∈ V we associate a hash
function φv randomly chosen from the c-wise independent
class Hc

t , and with each vertex w ∈ W we associate a ran-
domly chosen offset λw ∈ [t]. Each key x ∈ S is associated
with the edge e(x) = � h1(x), h2(x) � . Hence we may identify
the edge set E with the key set S. Then the behaviour of
the hash function α on S is equivalent to the behaviour of
the hash function β : E → [t], (v, w) 7→ φv((v, w)) ⊕ λw,
on E. Therefore, the hash class Fc,h1,h2 given by (h1, h2)
is uniform on S if and only if the hash values β(e), e ∈ E,

are uniformly and independently distributed. The following
theorem shows that this is the case if the cyclomatic number
of every connected component in G is bounded by c/2.

Theorem 4. Let G = (V ]W, E) be a bipartite graph such

that the cyclomatic number of every connected component of

G is bounded by c/2, c ∈ � . Let β : E → [t] be determined

as described above by independently and randomly choosing

φv ∈ Hc
t and λw ∈ [t] for v ∈ V and w ∈ W . Then the

hash values β(e), e ∈ E, are uniformly and independently

distributed.

Before we give the proof of this theorem, we note some
consequences. By the discussion above and according to
Theorem 1 Theorem 4 implies that if we choose (h1, h2) ∈

R̂d
r,m at random then the hash class Fc,h1,h2 is uniform for

S with high probability:

Corollary 1. Let ε > 0 and `, c ∈ � be fixed and let

m = m(n) = (1+ε)n. For any set S ⊆ U , |S| = n, and ran-

domly chosen (h1, h2) ∈ R̂2`
r,m the probability that Fc,h1,h2 is

uniform on S is at least 1 − n/r` − O � n−bc/2c � .
For example, for given n we could choose r = n/ log n

and c = ` = 2, and use linear hash functions as φw (see [5]);

for the 2`-wise independent hash classes needed for R̂2`
r,m we

can take the classes to be presented in Section 5. Then the
total space required for describing (h1, h2) ∈ R̂2`

r,m can be
made o(n); the space required for the function from Fc,h1,h2

can be bounded by 2(1 + ε)n words from U (for describing
φ1, . . . , φm) plus (1+ ε)n numbers from [t] (bit length log t).
Further, each hash function from this class can be evaluated
by two multiplications of O(log |U |)-bit integers, two addi-
tions, and some table-lookups and bit operations. The prob-
ability that Fc,h1,h2 is not uniform for a set S, |S| = n, is

bounded by 1/n1−δ for arbitrarily small δ > 0. By increas-
ing the parameters ` and c, one may decrease the failure
probability to an arbitrarily small polynomial in n−1, and
still have constant evaluation time and linear space. Note,
though, that increasing c to obtain a better reliability also
increases the space requirements by a factor of O(c).

In order to prove Theorem 4 we need a graph theoretical
lemma relating the cyclomatic number of a graph G to the
degree of vertices in the subgraph of G which consists only
of cycles and of paths connecting cycles. As before, we call
an edge a cycle edge, if it lies on a cycle. An edge that is not
a cycle edge but lies on some simple path whose endpoints
are both adjacent to cycle edges is called connecting edge.
Cycle edges and connecting edges together form the “cyclic
part” or “2-core” of G, which is studied from a different
viewpoint in [15].

Lemma 7. If the cyclomatic number of every connected

component of a graph G = (V,E) is bounded by q, then each

vertex v ∈ V is adjacent to at most 2q edges that are cycle

or connecting edges.

Proof. Fix a vertex v and a spanning tree T of the con-
nected component of v. The edges e1, . . . , eρ ∈ T that are
incident with v connect v to disjoint trees T1, . . . , Tρ. We
now add the ≤ q cycle edges of the component missing in T
one by one. When we add an edge that connects two vertices
inside one subtree Tσ, then eσ may turn into a connecting
edge, all other edges incident to v keep their status. If we



add an edge that connects v with a node in Tσ, then eσ

turns into a cycle edge, the other edges of v are unaffected.
Finally, if we add an edge that connects two nodes in differ-
ent subtrees Tσ and Tτ , then eσ and eτ become cycle edges,
the other edges of v are unaffected. Thus, if v is incident
with ` connecting edges and k cycle edges, then `+k/2 ≤ q;
in any case we have k + ` ≤ 2q.

Proof of Theorem 4. Note that an offset λw can be
considered as the constant hash function E → [t], e 7→ λw.
Hence, for a vertex u ∈ V ] W we call φu (if u ∈ V ) or λu

(if u ∈ W ) the hash function associated with u.
We consider two edge disjoint subgraphs GC = (UC , EC)

and GF = (UF , EF ) of G. The edge set EC consists of all
cycle and connecting edges of G and EF consists of all other
edges. UC = VC ] WC and UF = VF ] WF are the sets of
all vertices which are adjacent to at least one of the edges in
EC and EF , respectively. Note that while EC and EF form
a partition of the edge set, UC and UF are not necessarily
disjoint. — We prove the following two statements.

(i) Choosing the hash functions associated with the ver-
tices in UC independently at random yields an inde-
pendent and uniform distribution of the hash values
β(e) with e ∈ EC .

(ii) Assuming that the hash functions associated with the
vertices in UC are fixed, then choosing the hash func-
tions associated with the vertices in UF −UC indepen-
dently at random yields an independent and uniform
distribution of the hash values β(e) with e ∈ EF .

Note that the random choice of the hash functions associated
with the vertices in UF − UC has no influence on the hash
values β(e) with e ∈ EC , because no such edge is adjacent
to a vertex in UF − UC . Clearly, the theorem follows from
(i) and (ii).

Proof of (i): First, randomly choose λw, for w ∈ WC ,
and consider these values as fixed from here on. Now con-
sider some fixed v ∈ VC . Let q = bc/2c; by the assumption
in the theorem the cyclomatic number of the connected com-
ponent of v is bounded by q. By Lemma 7, it follows that
v is incident to at most 2q ≤ c edges in EC . Hence, the
hash values β(e) = φv(e) ⊕ λw of all edges e = (v, w) ∈ EC

which are adjacent to v are uniformly and independently
distributed, because φv is chosen from a c-wise independent
hash family. Since each edge in EC is incident to exactly one
vertex v ∈ VC , and since all hash functions φv are chosen in-
dependently, we conclude that all hash values β(e), e ∈ EC ,
are uniformly and independently distributed.

Proof of (ii): By definition, GF is a forest. Moreover,
each tree in GF contains at most one vertex in UC : If there
were two different vertices u, u′ ∈ UC in the same tree of GF ,
then the path in GF connecting u and u′ would either belong
to a cycle or it would connect two cycles. But then this path
would either consist entirely of cycle edges or connecting
edges in contradiction to the definition of EF .

The proof is by induction on the number of edges in the
forest GF . If GF contains no edge, then there is nothing
to show. Hence, assume that GF contains k ≥ 1 edges.
Since each tree has at least two leaves and at most one ver-
tex of each tree is in UC , we can choose a leaf u such that
u ∈ UF − UC . Let e∗ = (u′, u) be the unique edge adjacent
to u and assume w.l.o.g. that u ∈ W (the other case is anal-
ogous). Then β(e∗) = φu′(e∗) + λu. If we remove e∗ and

u from GF , then we are left with a forest containing k − 1
edges, and by the induction hypothesis, choosing the hash
functions associated with the vertices in UF −{u} uniformly
at random yields an independent distribution of the hash
values β(e), e ∈ EC −{e∗}. On the other hand, the random
choice of λu yields a uniform distribution of β(e∗) which is
independent of the hash values β(e), e ∈ EC −{e∗}, because
u is only adjacent to e∗. Hence, all hash values β(e), e ∈ EC ,
are uniformly and independently distributed.

4.3 Simulating shared memory
For illustrating the use of our function pairs in the context

of simulations of shared memory on distributed memory ma-
chines we just give one example. In [11, p. 530] a “Process 3”
is described. It assumes a key set S is given and functions
h1, h2 : U → [m] are chosen. The process is an abstraction
of a method for retrieving a copy of x from memory module
h1(x) or from memory module h2(x) for each x ∈ S, using
a memory module only for one key in one round. One pro-
ceeds in rounds t = 1, 2, . . . . In round t, for each j ∈ [m] in
parallel, first an x ∈ h−1

1 ({j}) is removed from S, then an
x ∈ h−1

2 ({j}) (if such keys exist). Theorem 6.4 in [11] says
that this process will have emptied set S after O(log log n)
rounds with high probability. The proof of this statement
solely relies on observations on the size and the cycle struc-
ture of the connected components of G(S, h1, h2). The same

statements follow from Theorems 1 and 2, if our class R̂d
r,m

is used.

5. D-WISE INDEPENDENCE WITHOUT
POLYNOMIALS

In this section, we describe how approximate d-wise in-
dependence can be achieved without the use of polynomials
or of expander graphs. It even turns out that (exploiting
word-level parallelism) one integer multiplication and some
bit operations and table lookups are sufficient to realize an
approximately d-wise independent class. The drawback is
that storing a function from the class takes much more space
than in the classical constructions (but still comparable to
the space used by Siegel’s functions). These approximately
d-independent classes may be used as building block for the
function pair classes considered in previous sections.

5.1 The basic construction
Let (M,⊕) be a finite abelian group, and let m = |M |.

M will serve as the range of our hash functions. Simple
examples for M would be {0, 1}µ for m = 2µ, with ⊕ being
bitwise XOR, or {0, 1, . . . , m − 1}, for any m, with ⊕ being
addition modulo m.

Let 0 < δ < 1 be an arbitrary constant, and let r =
mδ . Assume c ≥ 1 is constant and H is an arbitrary c-
universal class of hash functions from the universe U to R =
{1, . . . , r}. (I.e., for x, y different elements of U and f chosen
randomly from H we have Pr(f(x) = f(y)) ≤ c/r. See,
e. g., [2] for the existence of such classes.) Let d ≥ 2 be
an arbitrary constant. For arbitrary fixed ` ≥ 1, let mi,s,
1 ≤ i ≤ `, 1 ≤ s ≤ r, be randomly chosen elements of M .
Further, let f1, . . . , f` be chosen at random from H. Define

h(x) = m1,f1(x) ⊕ · · · ⊕ m`,f`(x).

Then, for ` = O(d) sufficiently large, h behaves like a func-
tion from an approximately d-independent class, in the fol-
lowing sense.



Theorem 5. Let x1, . . . , xd be arbitrary distinct elements

of U , and let a1, . . . , ad be arbitrary elements of M . Then

�
�
� Pr(h(xj) = aj , for 1 ≤ j ≤ d) −

1

md

�
�
� ≤

ε(m, d, `, δ)

md
,

where ε(m, d, `, δ) = d
`+1

· (c · d)` · md−`δ = O(md−`δ).

Proof. We imagine that the random choices are made in
two stages. First, the functions f1, . . . , f` are chosen, then
the random group elements mi,s. It is easy to see that if
f1, . . . , f` are such that for each j, 2 ≤ j ≤ d, we have

(Aj) ∃i, 1 ≤ i ≤ ` : fi(xj) 6∈ {fi(x1), . . . , fi(xj−1)},

then for such an i the random element mj,fi(xj) will be in-
dependent of the sequence (h(x1), . . . , h(xj−1)), hence h(xj)
will also be independent of (h(x1), . . . , h(xj−1)). Thus,

Pr(h(xj) = aj , for 1 ≤ j ≤ d | ∀j : (Aj)) =
1

md
.

It remains to show that the probability that (Aj) fails for
some j is bounded by ε(m, d, `, δ)/md. This can be seen as
follows:

By c-universality, for each i the probability that fi(xj) ∈
{fi(x1), . . . , fi(xj−1)} is bounded by (j − 1)c/r. By inde-
pendence, Pr((Aj) fails) ≤ ((j − 1)c/r)`. Thus,

Pr(∃j : (Aj) fails) ≤
�

2≤j≤d

((j − 1)c/r)`

≤
d`+1

` + 1
·

c`

r`
=

d

` + 1
· (d · c)` · md−δ` ·

1

md
.

The last equation follows from r = mδ.

5.2 One integer multiplication suffices
A simple variant of the construction described above

makes it possible to implement approximately d-wise in-
dependent hash classes in such a way that for evaluating
the function one integer multiplication as well as some
simple bit operations and table lookups are sufficient. Con-
sider the 2-universal class from [6] that consists of func-
tions fa : {0, 1, . . . , 2κ − 1} → {0, 1, . . . , 2µ − 1} given by
fa : x 7→ (ax) mod 2κ div 2κ−µ. We use the nice (and
well-known) property of this class that one can evaluate `
functions f1, . . . , f` on one argument x by one multiplication
of x with an O(`κ)-bit number and O(`) bit level operations
like shifts.

If we substitute this construction e. g. in the cuckoo hash-
ing function, we see that we can run cuckoo hashing with
functions that require only one multiplication (and bit op-
erations and table lookups).
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