Edu-List
Educating Beginners on Linked Lists

Carmen Simpson
Supervisor: James Tam
Undergraduate Department of Computer Science
University of Calgary

1.Abstract

This paper deals with the difficulty of
learning linked lists in such a way that the person
being taught feels that they fully understand the
finer points of such a data structure.

According to the constructivist approach
to education, people learn best when they can get
right in there and experiment with the material to
be learned [1] because it allows the student to
take what they already know, combine it with
what they learn from the program, and create a
more powerful and complete understanding of
this data structure [5]. These principles were
applied in an interactive environment that allows
users to do just that; experiment, make mistakes,
and in the process, come to a firm understanding
of how linked lists actually work.

While there are other programs that have
touched upon the concept of linked lists, this
constructivist based project would ultimately
place more of the control and the power to
manipulate and investigate in the hands of the
user, with the belief that this would prove to be a
more useful tool for those wishing to learn all
about Linked Lists. [1],[6],[2].

As well as basing the decision of Edu-List
on principles from the education discipline, the
design process will also be guided by
fundamental principles in Human-Computer
Interaction such as the principles of User
Centered Design, [10] as well as low-fidelity
prototyping techniques [7], [8] to bolster the
soundness of the concepts before the actual
computer implementation of the Edu-List
program.

2.Introduction

Newcomers to the world of data
structures and programming algorithms can find

themselves faced with an overwhelming
mountain of terminology, concepts, and both
basic and complex data structures and algorithms
[1]. Even in the structured environment of
schooling institutes, time allows little for an in-
depth teaching of even the simplest of concepts
before moving on to something even more
involved and complex. Having the ability to be
able to pull from other resources, specifically
ones that are both interactive and make the
learning process simple and even a little fun, can
have a clear and definite advantage for the
student just starting to learn about data
structures. [2]. Take for example, the concept
and implementation of linked lists. While the
concept is fundamental to many programming
languages, for a beginner, linked lists can be
confusing and hard to crystallize in one's mind.
It is not until one has had a chance to work with
the data structure and see how the code he or she
creates directly relates to the robustness and
correctness of the linked list, can the concept
take hold. [9]. As stated by Ben-Ari, a student
who does not take the surest path to success
immediately is just building up their
understanding of the issue they are trying to
learn about. In this way, mistakes can be just as
important in the learning of the subject [1].

There are two main camps of thought, in
the field of education, as to the way in which to
teach others new concepts. One is the
behaviorist approach, which is basically, that a
teacher tells the student what to do, the student
does it, and the student's behavior is observed
and graded [2]. The other is constructivism.
This is where what the student already knows is
taken into account, and the student is allowed to
actively come to the correct answers through
their own interactions and experimentation.
[1],[2]. Although both approaches are valid
approaches, it is this more constructivist
approach that will be taken for this project. The
reason for this approach as opposed to the

behaviorist approach is discussed more later on
and is hinted at in the previous work section.

So the goal is to create an interactive
stand-alone program that allows the user to learn
all the ins and outs of singly linked lists. The
program would also help the user produce or
create the pseudo code needed to create a
complete linked list, without giving the user an
easy out and simply producing the code for
them.

3.Previous Work

A program was created by Michael
Wilson, a research student in the Dept of
Computing Science and Maths at the University
of Stirling in 2001. Figure 1 is a look at his
program [11].

Michael Wilson's program offers actual
code at the bottom of the screen, with the user
simply clicking on a single button to add, insert
or delete nodes from the list. The above program
could be considered to lean towards more of a

This Is the interactive part for
the user. They choose what to do

2

interaction from the student, but there is not
much experimenting going on. The user clicks
on buttons at the top, and the node is perfectly
added, inserted or deleted. There is no attempt
required to figure out the code on the part of the
user, or to stumble over any of the concepts, and
in this way, the interaction is minimal.

In addition, using two concurrently
running classes of students in their first year of
computer science at the University of Calgary, a
study was conducted to determine the strengths
of the behaviorist approach in contrast to a
constructivist approach. One class was primarily
behaviorist in their teaching while the other class
was primarily running classes of students in their
first year of computer science at the University
of Calgary, a study was conducted to determine
the strengths of the behaviorist approach in
contrast to a constructivist approach. One class
was primarily behaviorist in their teaching while
the other class was primarily constructivist. It
was found that the students that were involved in
the constructivist approach had better success in

by clicking on the corresponding button.

This is the graphical portion of the program.
This Is where the linked list is bulit and modified
based on the user's actions.

Add Node to End

‘ Insert Node

‘Add Node Remove Selected Noc | Tidy Nodes

Clear comments | Reset

Hea

null

[eT

class Node {
7/ only bwo attributes, an slemsnt and a pointer
public int element:
public Bode next;

public Mode{int elem, Bede n) i
element = slem;
next = n;

end of cénstruster
Tede

T
17/ cla

When a button is pressed above. the
code corresponding to that button is
generated and displayed here.

behaviorist approach, since there is some

Any comments that the programmer
felt were relavent for the automatically
generated code are displayed here

as the code is created In the adjacent
window.

subsequent computer classes

Figure 1: The Linked List Program created by Michael Wilson [11].

than those involved in the behaviorist approach

[2].

Another similar study done at Grand
Valley State University by Mark J. Van Gorp
and Scott Grissom between objectivist -- which
is when a student listens to the instructor, then
practices what was taught by responding to the
assignments by the teacher -- and constructivist
teaching, they suggested that projects that were
constructivist based might hold the attention of
students longer while making the concepts being
taught easier to understand. [6].

4.The Reason for an Interactive
Constructivist Program

While a behaviorist approach can be
useful in its own right, it is the hope that a more
constructivist approach to learning linked lists
would give users a more “in-control” approach to
learning, as apposed to a teacher controlled
approach. As described by Greening and Kay
[5], constructivism is students taking their
experiences of actively participating in the
learning of a desired concept or topic, and
combining it with what they already know and
making a new knowledge base in their mind.

As well, in the study done by Becker and
Parker [2], where one class was behaviorist and
the other class was constructivist in their
methods, it was noted that “Students from the
constructivist class (class C) performed better in
successor courses, on the average, than did
students from the behaviorist class (class B).”(p.
5). Not only that, but quantitatively, Becker and
Parker report that “the class C students achieved
an average grade 0.7 higher than did the class B
in the successor programming class; grades are
compared on a 4-point scale, so this would
represent an 18% improvement.”(p.5). For
students just starting out, results like those means
more success, and more success can mean more
feelings of confidence and self-assuredness.

The proposed program would allow the
user to work on all aspects of a singly linked list,
while allowing the user to make mistakes and in
the process learn from those mistakes.

By building their own mental model, the
user can learn exactly what they need to do to
implement a linked list, as well as being able to
make mistakes and to see the consequences of
those mistakes on the simulation. In this way, it

helps them to understand why all the different
parts of the code are necessary to create a fully
functioning linked list. According to Ben-Aui,
learning isn't simply about giving a student a
number of steps to follow, and when the student
has completed those steps, that that then means
that the student has learned and understands what
they are doing [1]. The student needs to be able
to explore, and by exploring, learn and
understand and connect that new found
knowledge with what they already know,
whether that be in the shortest or the longest
number of steps to the desired goal [3].

5.The Solution

5.1.The Original Solution

The idea was to use an appropriate
metaphor to describe the functionality and the
dynamics of a Linked List. A metaphor could
help with a rather abstract concept by giving it a
more personable face to it, something that would
be entertaining and memorable.

The initial idea for the metaphor was
that of an alien race called Triangularians. These
aliens (Triangularians) would represent the
nodes. Each alien's contents of their stomach
would have been where the data was held (the
contents of the node). The alien at the head of
the line represented by the alien holding the
scepter would represent the head of the linked
list. Each alien in the line holds hands with the
alien on ecither side, in the line. These held hands
would represent the pointers to the next node.
The alien at the end of the line would not be
holding any one's hand, which would mean that
there is nothing in that alien's hand, representing
the null pointer at the end of a linked list. The
aliens would look something like figure 2 in
Appendix A.

This metaphor would ultimately be
created and shown through an animation, which
would be displayed on the screen at all times.
Within the program, the user would be able to
choose whether he/she would like to add to,
insert into, or delete a node from the linked list
being formed. Once a choice between these
three would be made the prototype would have
the set up of Figure 3, in Appendix A.

By clicking on “building blocks” of
various phrases and symbols located on the
screen in the button section, as pointed out in

figure 3, the user would be able to build phrases
of pseudo code. The program would then
analyze this code and the results of their pseudo
code would be shown to them by manipulating
the line of aliens.

The metaphor to be used was going to be
tested, before actual implementation, by using
Human Computer Interaction methods such as
low-fidelity prototyping techniques [7],[8]. A
Task Centered approach [4] as well as a User-
Centered Design [10] were used in the
implementation of the metaphor and the actual
program.

5.2. Working with the Original Metaphor

The images of the original low fidelity
prototype can be seen in Appendix A with a brief
description included with the various screens.

A beginner programmer agreed to try the
prototype out. In the process, it became clear
that the level of abstraction needed to make the
metaphor, (combined with the pseudo code,)
actually understandable, the weaker the
connection between the pseudo code and actual
code became. It was also discovered with the
original Triangularian based metaphor prototype,
that some of the questions were trying to cover
too much pseudo code, or too much of the linked
list algorithm at one time, leading to too much
ambiguity. The questions were not directed or
specific enough, and so the desired results of a
couple lines of pseudo code generated by the
user, was at best difficult for the user, because
the user didn't know how much to create or
where exactly to end.

As the attempt progressed to make the
questions more specific and less generic, it
became increasingly clear that to succeed in
making the metaphor work, more and more
abstraction was needed in the pseudo code that
the user was making, and thusly the phrases on
the buttons in the button area. As the abstraction
of the buttons and the pseudo code grew, any
connection between the pseudo code and actual
code that the user would then want to create
based on their created pseudo code would be
extremely weak. This of course was not the
desired outcome, since part of the purpose of the

4

user making the pseudo code would be to then
use what they had created to produce real code.
As the Triangularian simulation evolved, that
possibility became less and less viable.

Eventually the Triangularian metaphor
was abandoned in favor of searching for a more
direct and simpler concept to work with in the
intended program.

5.3.The New Solution

The images of the new solution low
fidelity prototype can be seen in Appendix B
with a brief description included with the

various screens.

The hope was that the new solution
would lead to less ambiguity, and also no need to
jump from a different metaphor to the actual
node concept of the linked list. By just using the
concepts of nodes and references, the phrases on
the buttons would be much more
straightforward, with very little abstraction. It
would as well possibly be a more direct
relationship between the pseudo code and how it
relates to actual code.

With the new Node based prototype,
questions were used that were far more specific
and would hopefully not allow for so much play
within the answer that could be given by the
user, which would help lead to the correct
answer.

6.The Design
6.1.Current Version

A simplified description of the layout can
be seen in Appendix C.

So then once the jump was made from
paper and sticky notes to the actual screen, the
general concepts remained the same, but the
layout changed quite a bit. Buttons were added
for moving around the program, which would
have to be there on every screen in the actual
program, but were not absolutely needed to get
the general concepts down in the low fidelity
prototypes talked about

* The animation is

displayed here.

Various buttons for
moving around the program
by the user.

g This is a guide
. to what the

various parts of
the diagram
represents.

H
Questions are E 865 reterence to
asked which the A e R netnsay
user answers by o ‘
creating pseudo L ————— “gontents ot
code through B this
the buttons. <0 s a noas
B Q: Using the buttons down below.
- How would you move from the head of the list to the
= _end (tail) of the list. using what is already given te you below?
7 [current] [equals][head |
-y <
% [until | [current’s reference|[equals]| [empty | {
This is where the
pseudo code is
displayed on the
screen. T (I T T

[*k e L e |

[equals current until_ | [points at |

| does not equat | | the next node

create new node | | the new node current's reference |

r

Various buttons used
to aid the user while
making the pseudo code.

“mme The button panel from
which the pseudo code is
created from.

A portion of the code
given to the user to
provide a starting pomt
as well as a qunde

to how to usé

buttons at the butlom
of the screen.

Figure 2: Screen One in “Add A Node”

and laid out in Appendix A and B. Figures 2
and 3 show the design as it stands right now.

The first figure is what the first screen in
“adding a node” would look like, and the second
one shows what the pseudo code would look like
in conjunction with the question.

For reasons of time and for the sake of
simplicity, it became clear early on that to
account for every possible combination of
buttons, and to supply every possible button that
a user might want to use, would not be possible
or practical. In order to achieve a working
program in the period of time that was available
for this project, the logic behind the program had
to be a lot less complex than that. Along those
lines, the program has a specified set of pseudo
code for each question, along with a specified
number of lines that that pseudo code should be

in. If the pseudo code that the user creates
matches both of those parameters, then they are
successful and move on to the next question. If
the pseudo code or number of lines does not
match, messages pop- up to try and help guide
the user to a “correct” answer.

7.The Working Program

7.1. The logic and look of the program

Some examples of the various messages
that pop up when a user has not created the
“correct” pseudo code, can be seen in Appendix
D. As well, screen shots showing the various
screens for adding, inserting and deleting a node
can be seen in Appendix E.

[AT seeeT Y S5 6 &
| Runpbemo |
- B —
H 1zaa 240 T
L 865 l;‘efeien‘te 1:
£ . |
D
\\/ is node

| » o

Using the buttons down below.
How would

[current] [equals]|[head |

you move from the head of the list to the
end (tail) of the list, using what is already given to you below?

[until |[current’'s reference][equals] [empty | {
| emtpy | | equals | | the next node |

| [| [cquas

| empty empty spot head

until points at |

| does not equal | | The next node | | treau:_new node

| current | |
| the new node | | current's reference |

;Fhe pseudo code made
by using the buttons.

Figure 3: Making Pseudo Code on the “Add A Node” Screen.

8.Usability Study
8.1. The Participants

There were five participants in total.
Some were graduate students, who are currently
working as teacher advisers for first year
computer science students. These graduate
students where asked to be a part of the study
because it was the hope that they would be able
to shed some light on what their students would
need or would be looking for in a program such
as Edu-List.

The rest were undergraduate computer
science students. Unfortunately, due to
scheduling conflicts, where students taking the
first course in computer science wouldn’t be
taught linked lists until the last week of the
semester, and an inability to get any students
taking the second course in computer science to
volunteer as participants, there were not any
participants who were from the intended target
group.

For clarification, the target group for
this project is considered to be first year students

who were just learning linked lists for the first
time and who would be considered beginner
programmers.

8.2. The Method

Each participant had the premise
behind the program explained to them with a
little bit of a background about the idea for the
program, along with an attempt to get them to
think about the program as if they were a first
year student again. The participant was asked to
sit down and try to figure out the program by
trying to understand the questions asked in the
program, and by trying to make the pseudo code
for the answers. Afterward, they were given a
questionnaire to fill out in regards to their
impressions about the program.

8.3. Observations from the Study

To say that the results were varied
would be an understatement.

The only question that the participants
even somewhat agreed on was number 8, (see

appendix F for the actual questionnaire,) which
asked if the participant thought the program
would help beginner programmers learn about
linked lists. The mark on that ranged from 3 to 2
on a scale of 1 to 5, where one was strongly
disagree and three was moderately agree.

Some participants thought the Edu-list
program was easy to use. They thought that the
graphics were the best part of the program, and
that the setup of the main screen was well done.
They also liked the reference picture in the top
right corner.

When asked if there was anything
confusing about the program, this gave back
mixed responses as well. Some thought the
buttons were confusing, and others thought they
were easy to understand. Some thought the
questions were confusing, while others thought
the questions were straightforward. Some
participants thought that starter pseudo code
given in the question that looked like buttons
was confusing, and finally some participants
didn’t think that there was anything confusing
about the program. While the majority thought
the program was easy to use, one participant
gave it a 4 out of 5 for difficulty.

9. Interpreting the Results of the
Study

One of the reasons for the spread of the
results can be placed in how much experience
the participants actually had, and what language
they were most comfortable programming in.
And as was demonstrated early on, the skills and
knowledge of the participants themselves
directly affected the way they interacted with the
program, and this ended up making the
evaluation of the Edu-List program difficult at
best. Indeed, this can be seen in the widespread
and unique reactions and comments from each
participant.

The issue with the buttons could be
explained by the fact that the participants that
had the most experience, were trying to think of
the questions, or the making of the pseudo code
in terms of a particular programming language,
which was a comment that came up a number of
times during the evaluating of the program.
Some wanted the phrases on the buttons to be
more specific to a particular coding language like
C or JAVA. Edu-List had purposely tried to stay

7

away from a specific language, which for an
experienced programmer, seemed to be difficult
to requite him or herself to such abstraction.

As well, despite trying to get the
heavily experienced participants to think about
the program through the eyes of a would be
beginner programmer, this proved to be as
challenging as putting training wheels back on
the bike of an Olympic bicyclist. From the
results, it appeared that the more experience a
participant had, the more the program got in the
way for that participant. For instance,
repeatedly, the participants with the most
experience tried over and over again to place all
the pseudo code needed for the whole process of
adding, deleting or inserting a node, on the first
screen, beneath the first question. The program
was designed to ask a number of questions, two
or three per section of functionality, where the
first question would have to be answered
correctly before proceeding to the next question.
Some participants seemed more intent on
showing that they could make all the pseudo
code, rather then answering the question and
successfully moving to the next question. It
seemed that they new the body of linked lists
enough that they didn’t need the questions to
guide or direct them. In fact, it seemed they
could see the code for a linked list, in the
programming language that they preferred,
already in their mind’s eye, and it was in that
way that they tried to put the pseudo code
together -- the question at hand pretty much
forgotten. The program of course was coming
from the opposite direction, which was where the
difficulty was for these more mature
programmers. ~ Where the purpose of the
program was to have a user answer the questions,
not knowing exactly what the resulting code
would look like, until all questions had been
answered and the results shown in the linked list
at the top of the screen, these experienced
participants could not unlearn what they already
knew for the study. Which is fair enough. The
program wasn’t created for their level of
expertise, and in the end, these participants were
still able to give some ideas and give some
valuable impressions. And it turned out that they
were a good backdrop of which the study was
then able to contrast them against programmers
who didn’t have as much experience or
knowledge.

It should also be noted that there was

indeed an issue with having such a small group
involved in the usability study. Results from
twenty or thirty students, especially if they could
have been in the target group, would have made
the weaknesses and the strengths of the project
stand out a lot more clearly than they do with
only five participants.

10.Future Work

Here, at the end of the project, there
are some possible areas that, if time allowed, the
project could be taken in and enhanced upon.

Firstly, the logic behind the program could
be implemented as a full fledged parser and
compiler, which could take any combination of
pseudo code created by the user and translate it
effectively to give appropriate responses back in
return.

Secondly, a user could be allowed to choose
the language that they were impartial to, so if a
user chose C, the terminology and phrases on the
buttons could be more reflective of that
programming language. And the buttons would
change depending on the coding language
chosen by the user.

Thirdly, a tutorial could be incorporated into
the program before the user ever got to the
making of pseudo code. A tutorial would let the
user first become familiar with the wording that
the program is offering them to work with.
Through the tutorial, they would become
comfortable with the meanings behind the words
and phrases being used within the scope of the
program. The tutorial could describe what the
various phrases mean, show some examples
using those phrases, and so on, to smoothly
adjust the user into the program. This would be
for users that might have quite a bit more
experience and might therefore need to be
trained in to the boundaries of the program to
have them work effectively with the program. It
might be worthwhile to note though that this
would be to make the program more accessible
to more experienced programmers, but since
these are not the group that the program was
intended for, in the first place, this idea may be
unnecessary or outside the scope of such as
program as Edu-List.

11.Conclusion

The project Edu-List was meant to be an
educational tool primarily used for learning
about linked lists, by implementing a
constructivist approach, where the user would
take the base of knowledge that they already had
about linked lists, add to it by using the program,
and by interacting with the program, students
would build a new mental model of the data
structure in their mind.

Edu-List features an interactive
environment using an animated image, to be
displayed at the top of the screen, to clarify the
different concepts, which the data structure of
linked lists is built from.

The premise behind the program was for
the user to create the pseudo code for a linked
list by him or her self, which would then allow
the user to take their newly acquired knowledge
and create the actual code that they would need
to implement an actual linked list in their own
programs. By employing a constructivist
approach, one that would take the knowledge
that they already had, add to it and develop it,
and in the process create a new more complete
mental image in their mind, the idea was that the
student would then learn the topic more
succinctly and completely, better preparing them
for the next step on the way to becoming a full
fledged computer scientist.

However the design of Edu-List was not
only guided by principles from the Education
discipline but also by fundamental principles in
Human-Computer Interaction, such as the
principles of User Centered Design [10], as well
as low-fidelity prototyping techniques [7],[8],
which were used to bolster the soundness of the
concepts before the actual computer
implementation of the Edu-List program ever
occurred.

A usability study was preformed, where
the participants included both undergraduate and
graduate students. The graduate students where
included because they were teacher advisors for
the first year computer science classes, and the
hope was that they would have unique insight
into the difficulties of teaching a complicated
topic like linked lists to beginner programmers.

The results that followed from this
collection of participants ended up showing an
interesting division. There were participants
that really liked the program. They liked the
graphics, they liked the set up of the main screen,
and they thought the program was easy to use.

On the other hand, there were participants
who really struggled with the program. They
found Edu-List constricting and confusing.

One of the reasons for the difference
between the responses was the level of
experience that the participant brought with them
to the study. It was found to be similar to a
triangle, with the wide base at the top and the
sharp edge at the bottom. The more experienced
participants had a hard time fitting all their wide
base of knowledge into the ten buttons that were
given to them in the program to work with, even

9

when they knew they were supposed to be
looking at the program as if they were beginner
programmers. In that way, the program really
seemed to get in their way.

For the more junior participants, the
number of buttons was a more manageable size
for them and the terminology or phrasing on the
buttons they found to be easy to make pseudo
code with. So then, for some participants, they
were able to work effectively with the program.

10

12.Appendix A

nexk
(hm] hode (nD*) ﬂVdC

(hode)
Figure 4: The Triangularian Metaphor

Figure 4 shows the aliens that were going to be used in the original metaphor for the
program.

Questions are asked

which the user This i .

answers by creating i b ?h”e'de

pseudo code. various parts
The animation is of the node
displayed here. represent.

@

>

This is where the
pseudo code the

Butt (aid A button panel
user is creating urtans ave Lal from which the
is displayed on out here to give

the screen.

hints or to submit pEeudo: code: 1=

their created code. created from.

Figure 5: The General Layout of the Low Fidelity Prototypes

11

Figure 5 shows just the general layout that the low fidelity prototypes took in the initial
stages of the project.

Addn... ‘
nad
‘ i hodt, Eghmd&r
= s butbng b the rignt —> 4 ‘
Q= ey e B et f, skart oF |
line , fo v end ok e ling? vtz] L st egeal =))

Lurrentipotin LAE

A- * ﬁ\m I PRar) M%‘ Head _TrictNaularian
Cow Rt it \eual] Pead Fridoes 00 (7 T gl e

| NoEspot 1n Line
' Fiast Trianadiarant Righ Hand

3 r Hint J riubm‘;%] Lw,mm ulakiand Shoulder l

U/ An image of the buttons ‘I:his is the button area
clicked by the user would of the low fidelity

be displayed here. prototypes.

The buttons would be
clicked on, and would
appear in the A: section
on the screen.

Figure 6: The button and answer areas to be used to create pseudo code by the user

The images below (figures 7-11) are the low fidelity prototypes used to create a
Triangularian (alien) based simulation of the “add” functionality of the intended program.

So Now faad # Vine i oen Started,
Wt wonic Yok WWiKe dD de 4

%‘éﬁqﬁ:mm n J
[%ﬁflrﬁp}l[mﬁm]
{Z’ﬁﬁn’é‘uwmh }

Figure 7: The Decision Screen

The program would start off with an introductory screen that provides a set of three

12

options for the user: delete, insert and add (Figure 7).

The animation.

The different parts
of the animation
defined.

Addav... |
Where the questions
are asked.
Q= lsing the butbng b the dght —> 22z | s | wzzzza)|
How evpvﬂd you ojet fmn e skart vk the]
e , v e end of Hie Tine? [| e |
J . St (head i arian | (nof epnal Tojlompba)§ Aupd_Jrinhguinrian) |
Cwrcont Arianawaial \egnali] iAngRiAfan T, AngUIAFIAN Here
: LurrentSpot £
pt+-Spot (n Line
5 Last Triangulatiant Righ Hand
[l] e Tl
An image of the buttons This is the button area
clicked by the user would glf'ot{‘oet¢%\gs“de“ty
be displayed here. " The buttons would be
A portion of the code clicked on, and would
given to the user to appear in the A: section
provide a starting point on the screen.

as well as a quide as to
how to use the buttons
to the right.

Figure 8: The First of the Triangularian Add Screens with Comments

Figure 8 shows a breakdown of the various sections on the main screen.

Add...

= lAsi buten(b the right — ,
G &ix} ?va‘{;tht; wﬁv #](b’(fonn {"f\]b skart oF the Lo Gl
ling , o Mo end ofF e line?, waite QN is mot eqteal to |}

A: M [Sanadarion (ot sl angbdl - Loote Lotrdedin
{Cwveent Srianawanal \eguals] iknaviifian e miangulanan Here |

K Zorezntipor ot

| Nk Spot cn Ling

§ Lagk TriangulAtiant Righ Hand
r Hint J r Submit) New Triakgiulariand {houlder

Figure 9: The First of the Triangularian Add Screens without Comments

13

Figure 9 shows the first question and the starter pseudo code that would be given to the
user when attempting to create pseudo code for adding a node into the list.

‘Mo\m... WYX i

e

(= Wint Wt wond o we e
%dmilm ’Yﬂnnojmlolﬁun H e wnd of the E“ g]
- Hutd Triangularian J

A: [while] [eavant syt in e] {not cpal To) emph] £ _ [I__—ﬁ
{civrent "'?Dt w ““ﬂg gvm‘“ W‘wr ;ED;‘. mh ﬂ.ﬂ W rﬁﬂﬂjﬂﬂlﬂffﬂn Hm)

3 CArrentIpor 1o LelL
- No-spot in Line

3 ‘ Last Triangulatiant Righ Hand

Hint ! Cubna + . } e Tridigwlaviand fhoulder

Figure 10: The Second of the Triangularian Add Screens

Figure 10 is the second question and the same starter code that was given in the first
question. The idea of the starter code is to give the user an idea of what their pseudo
code should look like, and to give them a place to start.

+ Y T X
It vt wowr rode

And e refults of oo tode 15 ...
It {hend Miangwarinr) (met el o) (omphy), T
conrront spot nTine§ (eqpal] * Unad Miargulariary

Whilé | \cuvent pot in ling) eFegml To) lemphl
: ,

{Curat ¢pot 10 line) Io[ﬁuﬂ] 5’ [Mdd & new Wiangularian hmﬂ

o (st Wimnawlorians vight hand Yoy tps J(aun Triang wiariang Swulder]

Add A Inftrepe Delete A
Tvi otng Wari oun Tridngulariein TV leird ot

ﬁdd 3

Figure 11: The Third and Last of the Triangularian Add Screens

14

13. Appendix B
The images below, (figures 12-16), are the low fidelity prototypes used to create just a
simple Node based simulation of the “add” functionality of the intended program.

So Now that a linked litk has
Been Starred,
What would dow liKet do”

1 J— T
€ | “bah “blah- ik A
i: bla I
I
nody© Aode |
R

[%
l
t

Figure 12: The Decision Screen

As in the original metaphor, the program would start off with an introductory screen that
provides a set of three options for the user: delete, insert and add (Figure 12).

The animation.

The different parts
of the animation

defined.
Add (1) =
1 YBleth n,{'z:u\cb
1 ot
\;Irr;e;:kt::. questions L — c::n\gz\l‘!
QX: lsing the buttons b e vignt — 5 [vt gl T Lo] |
How would yowu wove fom e wad of ne lick + e ‘
ond (i) of e lisk, using) what is Already g-.vmiumubw”.
(econt) (gals) (wad)
(@areents eberence] (upals) Gmphy) & lﬂw—‘ Lnd
A: o) lkm nw node l l cqualg '
), e) |
[Hint j [U\WK Y™ P«\WWJ l points nf llunfil]

An image of the buttons L
clicked by the user would This is the button area
be dis |ayed here A portion of the code of the low fidelity
play: : given to the user to prototypes.
provide a starting point The buttons would be
as well as a guide as to gg;ggg icr,lnt'haeng'“slggtlf,on
how to use the buttons oh the screen.

to the right.

Figure 13: The First of the Node Add Screens with Comments

15

Figure 13 shows the breakdown of the various sections of the intended main screen.

Add (N -.. ,
H u l“ [13 "bl b ‘h ﬂgmh (13 rwg&m
€ blak ah ',, to next
A blah nodt
b confunt?
eD \m'ée/ b
a: Wing the burtong b e vignt — 5 L does wat oqpal § fowoty]

How would You wove fon e wag of e lick & e :
G ot L s
(@) @)
(e afurence) (gl (sigy) & Lot roumic] Coend]

A

Wint Chetk. My Poswor

Figure 14: The First of the Node Add Screens without Comments

Figure 14 shows an early version of the question and starter code to be given for the first
“Add a Node” functionality.

Add (... , ’
i 2 "bln‘q" "blm hfﬁl\ A
| A blah i
D : L
hede O hodel _ e Wk

« Now you are ok the ond (til) of e ling, which
G‘ weang et you are Curentiy At node 1.
Vow would o4 Add & new node 7

Current) Cequals) (nead)
e e () gl 7

A @@

| Lidoes wet oqueal § Qowetyy]
=
‘I Uruaty mwnndbl B nead J
?[tm nw node I l auals I

‘ Frint ” Chegk M Poswed ,

Figure 15: The Second of the Node Add Screens

Figure 15 is very similar to figure 14, but has the second intended question for “Add a
Node” functionality, and again has the starter code there as well.

16

hode 0 hode |

l(f\f vf'x Rz’;ﬂi-f) Tﬁ;ﬁ ‘{?).A'{' «_’,j,j{',, AL +oi

[current) (eapals) (head)

QD s viamonce) gal) wighy i)~ £
CRrer] (gl (et od

- - (s)

— T YT

e - ek
o Ay] A Nope

e R
Figure 16: The Third and Last Node Add Screen

Figure 16 is what the final screen was intended to look like, complete with an
updated view of the linked list.

17
14. Appendix C

Working with paper, pencils, pens and sticky notes, an initial layout was created to start

working on a low fidelity prototype of the actual program. The basic design was again as
follows (figure 17):

Questions are asked
which the user

answers by creating 1 Ig"s,v'hsa? ?huelde

pseudo code. various parts
The animation is of the node
displayed here. represent.

@

>

This is where the
pseudo code the

Buttons are laid 8. Butfen parel

< A i 4

s ENaprayan Bh out here to give Heknie tate 1

the screen. hints or to submit created from.
their created code.

Figure 17: The general design of the low fidelity prototypes

As the user would work through the questions pertaining to either adding, inserting, or
deleting a node, the code that they would generate would be built up between the
question and answer section, so that at all times they could see how they were
progressing and how much they had already accomplished.

18

15. Appendix D

Figures 18 — 22 show some of the possible messages that might be displayed
while the user is making pseudo code.

“"How about a hint....

You actually need fewer lines than yvou have currently. Try condensing a little
| OK |

Figure 18: Message that would appear if the user has created too many lines of

-

code

{ow about a hint....

Ty starting vour answer with a different button

=

Figure 19: Message that would appear if the user has an incorrect beginning

{ow about a hint....

You have a good beginning, but vou seem 1o be missing something

Figure 20: Message that would appear if the beginning is correct, but there is
something incorrect further in the line.

There is something that you need to create first, before anything else happens.

Figure 21: Message that appears if they are supposed to be creating a node for the
current question, but they have not done so.

e Y

19

OK

=

Figure 22: Message that would appear if their first line is correct, but their second
line is not.

There are others, of course, but this gives you a good idea of what the messages entail.

20

16. Appendix E

The following figures (23-35) show the design and the appearance of the add,
insert and delete functionality of the program.

Figure 23: The first screen that user sees upon start-up.

865

240 840 Can go back to the|first screen | o et e
where the user car choose to

add, insert or deletf a node. Contairts of

““x._kh// thiz nod,
a node

The linked fist which the user manipulates A reference plcture
through their pseudo code, . for keeping in mind
Guestions and starter the parts of & node.
pseutdo code Is
displayed in this window
The pseudo code created
by the wser is displayed
In this window

The user can check thelr answer at any time If there Is mare than one line.
and get feedback on how they are doing. the user can delete fines

The user can add new lines

the next node.

current node _| [equals -| [points s |

| [-EMD-IIWS- refersnce | | new node’s referen ce | | CUmrent’s refersnce | neme II‘&U node
| {3

[remporary node the new node

Figure 24: Defining what everything is, on the main screen.

s, 0 B

B&S

| reference to
240 B40 the next node
contents of

‘“—-.._‘__// thiz node
a node

Q 'l « By adding to the two lines of pseudo code directly beiow here
*that have already been made for you.

How would you move
from the head of the list to the end of the list?

[current node||equals|| head |
[current’s reference] [points to nothing |

Use the buttons at the bottum of the screen
to make your own pseudo code in the window below.

| new nodges rererence | | currents reference | treate new node || the nextnode |
i I '

| temporarys rererence |

| temporarynoge current noge | | equals |7 peimsa |

the new node

Figure 25: Question One in Add.

Lo To Main

current node || equals head

i — —-
) BES ’[
To remowve a button | ceterence ta
240 = the next node
vou have created in the | .)
n . ~—- contents o
window, click on the T~._~ thiznode
image of that button e
{in the window) and
Q-I. By adding |\ that button will be de dire elow here
*that have d
eleted.
How wou’ T et rid of me, you {an WAIT . or CUCK on me|
from the f the list?

until 1current's reference| |

oints to nothin

Use the buttons at the bottum o

f the screen

to make your own pseudo code in the window below.

_current node |

This is & message that is displayed
when the first pseudo code button |s
clicked on. to et the user know how
to delete any unwanted code.

| SNBSS M [remouimerisse]

the nexi node |

New Line Please

| temporarys reference new node’s referen ce current’s reference | | create new node

| | I |
| temporarynede | | the new node | [comentnege || _equals || poimsa |

Figure 26: The pop up message describing how to delete pseudo code made by
the user.

- = e
Go To Main
- =
ass i
240 840 Ry pimterencete,
- Ncontonts
S eivoraall B
a node =
02 «Now that you are at the end of the line.
"How would you add a new node?
Icurrent nadallanualsll haad 1
Hoorah! Good Job on hothing |
[current completing this
question!
To ger rid of me, You Can WET or CLICE on me
This Is a message that comes up
| when the question is completed successfully.

Check My Answer

Mew Line Please

| temporary's reference

new node’s reference

| current’s reference

create new node

the next node |

|- Temporary node

the new node

|
| current node |

|
| equals

points @ |

Figure 27: The pop up message for successfully completed questions.

o To Maln

-

| rEference 16
240 B40 ‘\\lhﬂ next node
e *contents ol

this node

Qz-an that you are at the end of the line.
*How would you add a new node?

[current node][equals]|[head |
[Cuntil |[current’s reference] | points to nothing |
[current node][equals]] the next node |

| temporarys reference | | new node's reference | | currenvs reference | | create new nodge | |
0l || eurremtnoge | equals |1 poimsa |

he nextnode |

| remporary node the new node

Figure 28: Question Two in Add with the expected pseudo code.

TR e eeen Y S o6

-

B6S [g
240 40 =37 | (i et et
F'I o
a node
Where there was only two to start with, there
I_s now _th!'_ee. qsld anew nu_d_e has been added,

Watch the linked list above
for the results of your code.

[current node][equals]|[head |
[untili | [current’s reference] [points to nothing |
[current node] [equals][the next node |

|create new node |
|current’s reference|| points at || the new node |

[Agdd a NMode Insert a NMode | Deiele a Node

| temporary's reference new node’s referen ce current’s reference | | create new node the nexi node

| | ||| il
[temporary node | | the new node | |_ current node _| I _equals -| |— points at

Figure 29: The results of answering the add questions correctly.

&8a5

240 840 527 \\'\lrp's'ﬁ':ﬁcﬁn?-
_— contents of

"‘“x._‘__w// this node

@ node

QI' By adding to the two lines of pseudo code directly below here
*that have already been made for you,
Using temporary node
and current node, how would you move from the head of the
list to the spot where you wish to add a node into the list?

Itemporar}: node equals| head |

[current node][equals | [head
until | [current node|[points at|[the node at desired spot]

Use the buttons at the bottum of the screen
to make your own pseudo code in the window below.

_ temporary node | | equals | | Curment node J

| current noce | | eguals J the next node |

Mew Line Please Check My Answer Remove Line Please

current’s reference | | create new node

| remporary’s reference new node's referen ce the next node |

| | Il I
| temporary node | | the new node | |_ current node _| [equals -| [poimsar |

Figure 30: Question One in Insert with the expected pseudo code.

s, DB &

Go To Main
[-
—
8565 '[3
= LE L SR | the neRt node
7 e
| a node

Qz.ﬂuw that you are at the desired spot in the list.
-How would you add a new node In?

[temporary node |[equals]|[head
[current node][eguais] [head |
until |[current node]|[points at|[the node at desired spot

[temporary node |[equais][current node]
[current node][equals]|[the next node |

Creale new node |

| temporary's reference | points at | the new node |

new node’s reference | points at | current node |

Mew Line Pleasa Check My Answer Remowve Line Please

current's reference | | creare new node

| temporary's reference new node’s referen ce the nextnode. |

I
| remporary node the new node current node _| [equals —| I points at |

[—|
Figure 31: Question Two in Insert with the expected pseudo code.

Lo To Main

- -

865

f
240 254 840 527 | the next node
S

a node

Where there had been mree nodes, a new
node has beern insested

Watch the linked list above
for the results of your code.

[temporary node |[equals][head |

[current node][equals][head

[until | [current node|[poinis at|[ihe node at desired spot]|
[Tfemporary node |[equals]|[current node]
[current node|[equals][the next node |

[create new node
|new node’'s reference [peoints at current nndei
[femporary’s reference|[points at the new node

the next node |

| Lemporary’s reference || new nodes reference || current’s reference | treate new node
I £ I

il
[temporary node the new node current node _| I _equals —| |— points at |

Figure 32: The results of answering the Insert questions correctly.

s, D B

Go To Main

I
B&S -
240 259 840 527 | ho neAT node
W -t
= . ___1| a node

Ql. By adding to the two lines of pseudo code directly below here

*that have aiready been made for you,
How would you move from the head of the list to the desired

spot where you wish to delete a node from the list?
[temporary node ||equals|| head |
current node|[equals][head | tm_}
until_|[current node|[points at][the node at desired spot]
Use the buttons at the bottum of the screen
to make your own pseudo code in the window below.

temporary noda | | equals 1 | curment lmde J

|- current noce] |_ eguals J | the next node]

Mew Line Please | Check My Answer d ine Please

new node’s referen ce current’s reference | | create new node 1he next node

| remporarys reference |
i

I I i
|- temporary node ' | the new node | |_ current node _| [equals —| |— points al

Figure 33: Question One in Delete with the expected pseudo code.

TR seeen Y XX

| IS
—-
B&S ’[
| reference 1o
240 258 40 527 the next node
— 1]
~__— fREnas’
a node
o T

Q 2- Now that you are at the desired spot in the list.
= How would you remove a node from the list?

[current node|[equals][head |

[_until |[current node|[points at][the node at desired spot
[femporary node] |
current node|[equals|[the next node |

|_ current node | | equals J : the next node

|__ lemporan/ss reference | |_ points a J current node |

Mew Line Please | Check My Answer Remove Line Please

[| current’s reference | creare new node

current nade

new node’s referen ce the next node |

| remporarys reference |

il
[equals |7 peimsa |

|
|- rtemporary node | the new node

Figure 34: Question Two in Delete with the expected pseudo code.

(= EECEToT e 2 8.6

= - -

865 I“
f
z40 250 527 e “N;f. PRt nede
. contents of
- node
a node

Where there had been four nodes. now there
are only three, and a node has been deleteq.

Watch the linked list above
for the results of your code.

[temporary node |[equals]|[head |
current node|[equais|[head
until |[current node|[points at|[the node at desired spot]|
| temporary node ||equals ||current node|
[current node|[equals][the next node |

|current node||equals|| the next node |
[femporary's reference|[points at_|[current node]

Insert a Mode

| Dejlete a Node

curent’s reference | create new node

[wdd a Hode

| Lemporary’s reference

new node’s referen ce the next node |

| | ||| il
[temporary node | | the new node | |_ current node _| | _equals -| |— points at |

Figure 35: The results of answering the Delete questions correctly.

17. Appendix F
Edu-Link Questionnaire:

General:
1. How did you learn about linked lists? (Check as many as apply)
(1 Inalecture
Through the course of an assignment
I never have gotten the hang of linked lists
I drew it out on paper
I wrote code for it and ran my code
I got someone else to explain it to me
I did research on the internet
Other:

0 I O A O

27

2. What would you say was/is the hardest thing to understand about linked lists?

About the program:

3. Did you find the wording on the buttons to be: (check as many as apply)

(] Adequate

Inadequate

Clear

Confusing

Easy to make pseudo code with

Hard to make pseudo code with

Took some getting used to

Took no time at all to be comfortable with

Had too many words/phrases to choose from
Other:

N B O

4. In the program, what area, if any, needed improvement?

Didn’t have all the words/phrases that I would have liked.

28

5. In the program, what if anything, did you like best about the program?

6. Did you find any part of the program confusing

[J No [] Yes, because
7. Did you find the program: Extremely Hard
Easy to use Moderate to Use
1 2 3 4 5

Reason for Your Answer:

8. Do you think that the program would help beginner programmers learn about
linked lists?
Strongly Agree Moderately Agree Strongly Disagree
1 2 3 4 5
Reason for Your Answer:

29

9. Do you think it would it be easy to take the pseudo code the user creates in the
program and turn it into real code?
Strongly Agree Moderately Agree Strongly Disagree
1 2 3 4 5
Reason for Your Answer:

10. Would this program help to teach beginner programmers about linked lists?
Strongly Agree Moderately Agree Strongly Disagree
1 2 3 4 5
Reason for Your Answer:

30

18.References
[1]Ben-Ari, M. (1998). Constructivism in Computer Science Education. Proceedings of

the Technical Symposium on Computer Science Education. SIGSCE '98 (Atlanta,
GA).

[2]Becker, K and Parker, J.R.. (2003).Measuring Effectiveness of Constructivist and
Behaviorist Assignments in CS102, Department of Computer Science,
University
of Calgary.

[3]Bransford, J and Brown, A and Cocking, R. (1999). How People Learn: Brain, Mind,
Experience, and School. Washington: National Academy Press.

[4]Greenberg, S. (2002) Working Through Task-Centered System Design. in Diaper, D
and Stanton, N. (Eds) The Handbook of Task Analysis for Human-Computer
Interaction. Lawrence Erlbaum Associates.

[5]Greening, T and Kay, J. (2001) Editorial, Computer Science Education 11:3, 167.

[6]Grissom, S and Van Gorp, M. (2001)4n Empirical Evaluation of Using Constructive
Classroom Activities to Teach Introductory Programming, Computer Science
Education 11:3, 247-261.

[7]Nielson, J. (1993). Chapter 4.8: Prototyping. Usability Engineering. Academic
Press (Boston).

[8]Rettig, M. (1994). Prototyping for Tiny Fingers. Communications of the ACM 37:4.
21-28.

[9]Roger, P. (1996)Teach the Way Most People Learn — The Upside -Down Way.
Community College Week 9:8, 4-5.

[10]Soderston and Rauch (1996). The Case for User-Centered Design. Proceedings of the
Society of Technical Communication.

[11]Wilson, M. Animated Data Structures: the Linked List. (2001)
http://www.cs.stir.ac.uk/~mew/dissertation/simulation.htm.

