
Change Management

James Tam, Saul Greenberg, and Frank Maurer
Department of Computer Science

University of Calgary
Calgary, Alberta

phone: +1 403 220 3532

tamj@cpsc.ucalgary.ca

ABSTRACT

In this paper, we analyze the problems of keeping up with
diagrammatic changes being made within a collaborative software
design tool. With these graphical tools, one software engineer
may specify possible software architectures e.g., through a UML
editor. A second software engineer may then modify the diagram.
The problem is how the original engineer can track what changes
had been made. Most systems provide little or no support for this,
and we believe that relying on the engineer’s memory is
inadequate. We propose a several graphical representations that
can illustrate to an author what has changed. Issues in graphical
representation of changes include how actual changes can be
portrayed, as well as ways to filter the view to ensure the
designers only see relevant changes at an appropriate level of
detail.

Keywords: Change Management, information filtering, graphical
representations, graphical software design tools.

1. INTRODUCTION
Teams involved in collaborative software design and engineering
often follow a divide and conquer approach. They try to split the
project into manageable tasks, where a single person can work on
a task. The challenge is in bringing the deliverables together into a
cohesive and testable whole.

However, there are also times when team members must work on
the same task and task artifacts: documents, software, UML
diagrams, functional specifications, and so on. One person may
work on the artifact for a while, and then pass it on to the next
person (perhaps to continue the work or to revise it as required).
Iterative development can then occur between these two people in
a back and forth manner, or it could even include other team
members.

The problem is how team members can recognize and / or track
changes made in a document by other members. At the crudest
level, this could simply be a case where one person analyzes a
changed artifact, perhaps relying on memory to recognize
changes. Errors and inaccuracies are, of course, likely. Slightly
better is the case where people communicate over the document,
where one tells the other (perhaps orally or by notes within the
document) what has been done. Of course, this requires a great
deal of additional work, and it is easy for one person to neglect to
tell another about some crucial change.

What is needed is a more formal way to support how people
recognize changes within artifacts. We thus define change
management as a process that helps one person recognize and
track changes made by one or more others.

Our particular interest is in how change management can be
applied within a diagramming tool, such as a UML editor. We are
especially concerned with how changes within these tools can be
tracked, how the relevancy of changes can be determined, and
how changes can be displayed to another person in an effective
and efficient manner.

We set the scene by first describing previous work on change
management in both human computer interaction and in software
engineering. We then discuss the difficulties of doing change
management in a graphical diagramming tool, especially when
many changes require some notion of filtering to reduce
complexity. Finally we will present and discuss our early work in
how to represent changes within a graphical editor.

2. PREVIOUS RESEARCH
2.1 Software Engineering research in change
management
Within the field of Software Engineering, researchers have stated
that the goal of change management is to be able to predict how a
software project will be affected by the changes that are made to
the project [1]. This is somewhat different from our view of
change management: while we are concerned with what changes
have been made, this other view considers the effect of changes.

Still there is work related to our own definition of change
management. In particular, almost all programming environments
contain some kind of version control system. One example is the
CVS (Concurrent Version System) available in Unix, and
Microsoft Visual SourceSafe available as part of the Microsoft
Visual Development Suite. Both allow programmers to check in
and check out versions of programs and other documents as they
are being developed, and allow comments to be added to them
(such as a textual note describing what has changed). They also
allow differencing of versions, where differences in text
sequences are shown.

Dellen [2] developed a different type of change management
framework that would automatically notify the interested members
of a team when particular changes occurred. It used an event-
driven notification system: as a change occurred in a piece of
software, an event would be raised. If developers within the
project had registered their interest in that particular type of event,

Saul
In Proceedings of the Western Computer Graphics Symposium 2000, (Panorama Mountain Village, BC, Canada), March 26-29, 2000.

then they would be notified of the change. Similar to this,
programmers hooked the Elvin notification server [3] into CVS,
where notifications of how files were checked into and out of the
repository appeared on a one line tickertape. As with Dellen’s
system, programmers could subscribe to those items they were
interested in.

While these strategies are interesting, all are somewhat difficult to
apply to the graphical nature of diagramming systems.
Programmers may find it difficult to articulate a graphical change:
in real life, we often gesture around the drawing to do this. This
makes the current notification and comment annotation
components of systems somewhat unwieldy. The version
differencing tools only work on sequential text: they are not able
to show differences within a graphical drawing, such as would be
found in a graphical design editor for the Unified Modeling
Language (UML).

Unlike these other systems, which are centered on sequential text,
Rational Rose (by Rational Software Corporation) contains a
change management facility that works in a UML diagramming
tool. It works by translating the diagram into a hierarchical text
description and by highlighting changed items within this text.
Unfortunately, this representation of the UML diagram and its
changes are no longer in graphical form: thus programmers must
view it in a different (and perhaps more difficult to understand)
representation. As well, an approach such as this would not be
able to handle free form annotations and marks that can be added
to the UML view, as can be done in the Argo open source UML
editor [4].

2.2 HCI research in change management
As with software engineering, most of the previous research has
focused on text based work environments. Perhaps the best
example is Neuwirth et. al.’s “Flexible Diff-ing” text differencing
system [5] which was developed by Neuwirth, Chandhok, Kaufer,
Erion, Morris, Miller. What makes it special is that it allows
viewers to contrast changes at various levels of detail. Thus
changes can be viewed at a high level (e.g., where have changes
been made) as well as in progressive detail (e.g., exactly what
changes have been made).

Hill and Hollan [6] proposed one graphical approach related to
change management called “edit-wear and read-wear”. They
would track what parts of a document had been either read or
edited, and would then use graphical "wear" indicators to indicate
how much had been changed and in what places. The more often
that a portion of text was changed, the more vivid the wear
indicator [6]. While there was a brief discussion of how some of
these ideas might be applied to a graphical based environment,
such as applying wear indicators to user interfaces, the main focus
of the research was conducted in text systems.

3. CHANGE MANAGEMENT ON
COLLABORATIVE GRAPHICAL
DOCUMENTS
Our particular interest is how change management can be
supported in a collaborative process that uses predominantly
graphical rather than textual documents. While we are interested
in how change can be tracked within all 2-dimensional graphical

drawing and diagramming applications, we will concentrate for
now on how software engineers collaboratively develop UML
diagrams. Our approach is to somehow track and visualize
changes within a diagram so that engineers can answer questions
such as:

• Have any changes occurred since I last visited this
document?

• How many changes have occurred?
• Where have these changes happened?
• How have particular parts of the diagram changed?
• Who did these changes?
• Why did they perform these changes?

These questions were derived from similar questions raised by
Gutwin [7], who was studying how people would track what
others were doing when working together in real time over a
visual work surface. Gutwin was interested in what he called
Workspace Awareness . While related, our own work will focus
on awareness of changes in an asynchronous visual work surface
designed for software development rather than a real-time type of
system.

In the following section, we raise two issues that we believe must
be addressed by any graphical change management system:
information filtering and the techniques used to represent changes
visually.

4. INFORMATION FILTERING
We expect some graphical documents to change little between
versions, and some to change quite a bit. We expect cases where
changes pervade the entire document, and others where they are
quite localized. The problem is that in all these different cases, the
viewer of the document must somehow make sense of what has
changed. Showing all changes at all levels of detail may be
confusing when many changes are present, and people will have
to do much work in order to determine which of the many changes
are relevant.

One solution is to apply information filtering techniques to
change management. This involves having the system somehow
screen all changes that have occurred, and showing only the
important changes to designers. Particular changes may be shown
at a higher level of abstraction i.e., the abstraction could indicate
that an object has changed, without detailing all the changes
within it. Without filtering, designers may become bombarded
with volumes of changes that they may or may not always be
interested in.

4.1 Filtering: Too much vs. not enough
An important issue that is immediately raised is determining
which changes should be shown to designers and which ones
should be hidden. If too many changes are filtered then there is a
risk that important information may be lost. If too few changes
are filtered then the person may be overloaded with irrelevant
information.

There are two approaches for determining the relevancy of a
change to a designer. The first way is to try to automate this
process and having a program determine what is relevant for an

individual. The second way is to allow people to decide the issue
for themselves.

As previously mentioned, there was already some research
conducted using the first approach by Dellen [2]. Her approach
was tailored for situations where programmers were working on
different but inter-related parts of a system, which differs from our
situation where people are working on the same part of the system
(or diagram).

In the second approach, the people would set their own criteria for
determining relevancy. Only the changes that have meet these
criteria would be displayed. For instance, a person may only be
interested in seeing changes that occurred during a certain period
of time, or seeing changes that were caused by a certain person.
The problem, of course, is in giving people appropriate ways to
determine relevancy within the tool.

5. GRAPHICAL REPRESENTATIONS
Assuming that a diagramming tool knew what changes are
relevant to show to its user, it still must decide how to show these
changes to the person. A key issue is the visual representation
used. Any indicator of change must be noticeable enough so that
it is easily interpreted and not overlooked, while remaining
unobtrusive so that it does not interfere with the real work of
software design.

The first step to finding good representations is to determine the
classes of changes that can be made to a diagram. Because we are
still in the early stages of our work, we have explored only three
primitive change operations that people can apply to a UML
diagram: the addition, deletion, and modification of objects.

There are, of course, many possible ways to represent these
operations to a viewer. We are beginning our work with simple
change indicators: icons attached to objects that indicate their
changed state. Because there are many types of icons, we have
developed and are testing the effectiveness of three different sets
of change indicators.

1. Rudimentary graphical indicators use simple symbols to

represent changes for addition, for deletion, and
for modifications.

2. Change icons often seen in today’s systems, with for

addition (the blank document often represents ‘new’, for

deletion, and for modification.

3. Text-based icons: for addition, for deletion, and

 for modification.

In the following three illustrations, these representations will be
shown in a sample software project specified as a UML class
diagram. The changes added to the sample shows the situation
where two classes have been added to the UML diagram, and one

class has been modified by having a method deleted and a data
field added to it.

6. FUTURE WORK
We are currently running a study to evaluate the effectiveness of
iconic change indicators in general, as well as how particular
change indicators perform. We are implementing and testing these
simple change management ideas by modifying an existing UML
editor. Of course, iconic change indicators are just scratching the
surface of how to represent changes, and we expect to develop
other much more radical methods for representing change as well
as for filtering changes.

References

[1] Bohner, S. and Arnold, R. An Introduction To
Software Change Impact Analysis. Software Change
Impact Analysis. IEEE Computer Society Press, Los
Alamitos, CA 1996.

[2] Dellen, B. Change Impact Analysis Support For
Software Development Processes. A Ph.D. Thesis
from the University of Kaiserslautern 2000.

[3] Parsowith, S., Fitzpatrick, G., Kaplan, S. and Segall, B.
(1998) Tickertape: Notification and Communication in
a Single Line. In Proceedings 3rd Asia Pacific
Computer Human Interaction (APCHI98), Japan, IEEE
Computer Society, pp 139-144.

[4] Robbins S. An open source UML editor (v 0.5.2) from
the University of California, Irving. Irving, California
Available online at http://argouml.tigris.org

[5] Neuwirth, C., Chandhok, R., Kaufer, D., Erion, P.,
Morris, J. and Miller, D. (1992). Flexible Diff-ing In
A Collaborative Writing System. Proceedings of the
ACM ’92 (Toronto ON, 1992) ACM Press, 147 - 154.

[6] Hill, W. and Hollan, J.. Edit Wear And Read Wear.
Proceedings of CHI ’92 (Monterey CA, 1992) ACM
Press, 3 - 10.

[7] Gutwin, C. Workspace Awareness In Real-Time
Distributed GroupWare. A Ph.D. Thesis from the
University of Calgary, 1997.

1a. Change Indicators

Operation Change Indicator Used

Addition

Deletion

Modification

1b. Example

Figure 1. Rudimentary Graphical Indicators

2a. Change Indicators

Operation Change Indicator Used

Addition

Deletion

Modification

2b. Example

Figure 2. Common software based icons as change indicators

3a. Change Indicators

Operation Change Indicator

Addition

Deletion

Modification

3b. Example

Figure 3. Text-based change indicators

