
9/10/08 3:26 PMHow to Think Like a Computer Scientist: Learning with Python7. Strings

Page 1 of 15http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml

7. Strings
1. A compound data type

2. Length

3. Traversal and the for loop

4. String slices

5. String comparison

6. Strings are immutable

7. The in operator

8. A find function

9. Looping and counting

10. Optional parameters

11. The string module

12. Character classification

13. String formatting

14. Glossary

15. Exercises

7.1 A compound data type
So far we have seen five types: int, float, bool, NoneType and str. Strings are qualitatively
different from the other four because they are made up of smaller pieces---characters.

Types that comprise smaller pieces are called compound data types. Depending on what we are doing,
we may want to treat a compound data type as a single thing, or we may want to access its parts. This
ambiguity is useful.

The bracket operator selects a single character from a string:

>>> fruit = "banana"
>>> letter = fruit[1]
>>> print letter

The expression fruit[1] selects character number 1 from fruit. The variable letter refers to the
result. When we display letter, we get a surprise:

a

The first letter of "banana" is not a, unless you are a computer scientist. For perverse reasons,
computer scientists always start counting from zero. The 0th letter ("zero-eth") of "banana" is b. The
1th letter ("one-eth") is a, and the 2th ("two-eth") letter is n.

If you want the zero-eth letter of a string, you just put 0, or any expression with the value 0, in the
brackets:

http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml#auto0
http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml#auto1
http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml#auto2
http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml#auto3
http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml#auto4
http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml#auto5
http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml#auto6
http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml#auto7
http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml#auto8
http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml#auto9
http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml#auto10
http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml#auto11
http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml#auto12
http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml#auto13
http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml#auto14

9/10/08 3:26 PMHow to Think Like a Computer Scientist: Learning with Python7. Strings

Page 2 of 15http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml

>>> letter = fruit[0]
>>> print letter
b

The expression in brackets is called an index. An index specifies a member of an ordered set, in this
case the set of characters in the string. The index indicates which one you want, hence the name. It can
be any integer expression.

7.2 Length
The len function returns the number of characters in a string:

>>> fruit = "banana"
>>> len(fruit)
6

To get the last letter of a string, you might be tempted to try something like this:

length = len(fruit)
last = fruit[length] # ERROR!

That won't work. It causes the runtime error IndexError: string index out of range. The
reason is that there is no 6th letter in "banana". Since we started counting at zero, the six letters are
numbered 0 to 5. To get the last character, we have to subtract 1 from length:

length = len(fruit)
last = fruit[length-1]

Alternatively, we can use negative indices, which count backward from the end of the string. The
expression fruit[-1] yields the last letter, fruit[-2] yields the second to last, and so on.

7.3 Traversal and the for loop
A lot of computations involve processing a string one character at a time. Often they start at the
beginning, select each character in turn, do something to it, and continue until the end. This pattern of
processing is called a traversal. One way to encode a traversal is with a while statement:

index = 0
while index < len(fruit):
 letter = fruit[index]
 print letter
 index += 1

This loop traverses the string and displays each letter on a line by itself. The loop condition is index <
len(fruit), so when index is equal to the length of the string, the condition is false, and the body of
the loop is not executed. The last character accessed is the one with the index len(fruit)-1, which
is the last character in the string.

9/10/08 3:26 PMHow to Think Like a Computer Scientist: Learning with Python7. Strings

Page 3 of 15http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml

Using an index to traverse a set of values is so common that Python provides an alternative, simpler
syntax---the for loop:

for char in fruit:
 print char

Each time through the loop, the next character in the string is assigned to the variable char. The loop
continues until no characters are left.

The following example shows how to use concatenation and a for loop to generate an abecedarian
series. "Abecedarian" refers to a series or list in which the elements appear in alphabetical order. For
example, in Robert McCloskey's book Make Way for Ducklings, the names of the ducklings are Jack,
Kack, Lack, Mack, Nack, Ouack, Pack, and Quack. This loop outputs these names in order:

prefixes = "JKLMNOPQ"
suffix = "ack"

for letter in prefixes:
 print letter + suffix

The output of this program is:

Jack
Kack
Lack
Mack
Nack
Oack
Pack
Qack

Of course, that's not quite right because "Ouack" and "Quack" are misspelled. You'll fix this as an
exercise below.

7.4 String slices
A substring of a string is called a slice. Selecting a slice is similar to selecting a character:

>>> s = "Peter, Paul, and Mary"
>>> print s[0:5]
Peter
>>> print s[7:11]
Paul
>>> print s[17:21]
Mary

The operator [n:m] returns the part of the string from the "n-eth" character to the "m-eth" character,
including the first but excluding the last. This behavior is counterintuitive; it makes more sense if you
imagine the indices pointing between the characters, as in the following diagram:

9/10/08 3:26 PMHow to Think Like a Computer Scientist: Learning with Python7. Strings

Page 4 of 15http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml

If you omit the first index (before the colon), the slice starts at the beginning of the string. If you omit the
second index, the slice goes to the end of the string. Thus:

>>> fruit = "banana"
>>> fruit[:3]
'ban'
>>> fruit[3:]
'ana'

What do you think s[:] means?

7.5 String comparison
The comparison operators work on strings. To see if two strings are equal:

if word == "banana":
 print "Yes, we have no bananas!"

Other comparison operations are useful for putting words in alphabetical order:

if word < "banana":
 print "Your word," + word + ", comes before banana."
elif word > "banana":
 print "Your word," + word + ", comes after banana."
else:
 print "Yes, we have no bananas!"

You should be aware, though, that Python does not handle upper- and lowercase letters the same way
that people do. All the uppercase letters come before all the lowercase letters. As a result:

Your word, Zebra, comes before banana.

A common way to address this problem is to convert strings to a standard format, such as all lowercase,
before performing the comparison. A more difficult problem is making the program realize that zebras are
not fruit.

7.6 Strings are immutable
It is tempting to use the [] operator on the left side of an assignment, with the intention of changing a
character in a string. For example:

greeting = "Hello, world!"

9/10/08 3:26 PMHow to Think Like a Computer Scientist: Learning with Python7. Strings

Page 5 of 15http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml

greeting[0] = 'J' # ERROR!
print greeting

Instead of producing the output Jello, world!, this code produces the runtime error TypeError:
'str' object doesn't support item assignment.

Strings are immutable, which means you can't change an existing string. The best you can do is create
a new string that is a variation on the original:

greeting = "Hello, world!"
newGreeting = 'J' + greeting[1:]
print newGreeting

The solution here is to concatenate a new first letter onto a slice of greeting. This operation has no
effect on the original string.

7.7 The in operator
The in operator tests if one string is a substring of another:

>>> 'p' in 'apple'
True
>>> 'i' in 'apple'
False
>>> 'ap' in 'apple'
True
>>> 'pa' in 'apple'
False

Note that a string is a substring of itself:

>>> 'a' in 'a'
True
>>> 'apple' in 'apple'
True

Combining the in operator with sting concatenation using +, we can write a function that removes all the
vowels from a string:

def remove_vowels(s):
 vowels = "aeiouAEIOU"
 s_without_vowels = ""
 for letter in s:
 if letter not in vowels:
 s_without_vowels += letter
 return s_without_vowels

Test this function to confirm that it does what we wanted it to do.

9/10/08 3:26 PMHow to Think Like a Computer Scientist: Learning with Python7. Strings

Page 6 of 15http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml

7.8 A find function
What does the following function do?

def find(strng, ch):
 index = 0
 while index < len(strng):
 if strng[index] == ch:
 return index
 index += 1
 return -1

In a sense, find is the opposite of the [] operator. Instead of taking an index and extracting the
corresponding character, it takes a character and finds the index where that character appears. If the
character is not found, the function returns -1.

This is the first example we have seen of a return statement inside a loop. If strng[index] == ch,
the function returns immediately, breaking out of the loop prematurely.

If the character doesn't appear in the string, then the program exits the loop normally and returns -1.

This pattern of computation is sometimes called a "eureka" traversal because as soon as we find what we
are looking for, we can cry "Eureka!" and stop looking.

7.9 Looping and counting
The following program counts the number of times the letter a appears in a string, and is another
example of the counter pattern introduced in chapter 6:

fruit = "banana"
count = 0
for char in fruit:
 if char == 'a':
 count += 1
print count

7.10 Optional parameters
To find the locations of the second or third occurence of a character in a string, we can modify the find
function, adding a third parameter for the starting postion in the search string:

def find2(strng, ch, start):
 index = start
 while index < len(strng):
 if strng[index] == ch:
 return index
 index += 1
 return -1

The call find2('banana', 'a', 2) now returns 3, the index of the first occurance of 'a' in 'banana'
after index 2. What does find2('banana', 'n', 3) return? If you said, 4, there is a good chance

9/10/08 3:26 PMHow to Think Like a Computer Scientist: Learning with Python7. Strings

Page 7 of 15http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml

you understand how find2 works.

Better still, we can combine find and find2 using an optional parameter:

def find(strng, ch, start=0):
 index = start
 while index < len(strng):
 if strng[index] == ch:
 return index
 index += 1
 return -1

The call find('banana', 'a', 2) to this version of find behaves just like find2, while in the call
find('banana', 'a'), start will be set to the default value of 0.

Adding another optional parameter to find makes it search both forward and backward:

def find(strng, ch, start=0, step=1):
 index = start
 while 0 <= index < len(strng):
 if strng[index] == ch:
 return index
 index += step
 return -1

Passing in a value of -1 for step will make it search toward the beginning of the string instead of the
end. Note that we needed to check for a lower bound for index in the while loop as well as an upper
bound to accomodate this change.

7.11 The string module
The string module contains useful functions that manipulate strings. As usual, we have to import the
module before we can use it:

>>> import string

To see what is inside it, use the dir function with the module name as an argument.

>>> dir(string)

which will return the list of items inside the string module:

['Template', '_TemplateMetaclass', '__builtins__', '__doc__', '__file__',
'__name__', '_float', '_idmap', '_idmapL', '_int', '_long', '_multimap',
'_re', 'ascii_letters', 'ascii_lowercase', 'ascii_uppercase', 'atof',
'atof_error', 'atoi', 'atoi_error', 'atol', 'atol_error', 'capitalize',
'capwords', 'center', 'count', 'digits', 'expandtabs', 'find',
'hexdigits', 'index', 'index_error', 'join', 'joinfields', 'letters',
'ljust', 'lower', 'lowercase', 'lstrip', 'maketrans', 'octdigits',
'printable', 'punctuation', 'replace', 'rfind', 'rindex', 'rjust',

9/10/08 3:26 PMHow to Think Like a Computer Scientist: Learning with Python7. Strings

Page 8 of 15http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml

'rsplit', 'rstrip', 'split', 'splitfields', 'strip', 'swapcase',
'translate', 'upper', 'uppercase', 'whitespace', 'zfill']

To find out more about an item in this list, we can use the type command. We need to specify the
module name followed by the item using dot notation.

>>> type(string.digits)
<type 'str'>
>>> type(string.find)
<type 'function'>

Since string.digits is a string, we can print it to see what it contains:

>>> print string.digits
0123456789

Not surprisingly, it contains each of the decimal digits.

string.find is a function which does much the same thing as the function we wrote. To find out more
about it, we can print out its docstring, __doc__, which contains documentation on the function:

>>> print string.find.__doc__
find(s, sub [,start [,end]]) -> in

 Return the lowest index in s where substring sub is found,
 such that sub is contained within s[start,end]. Optional
 arguments start and end are interpreted as in slice notation.

 Return -1 on failure.

The parameters in square brackets are optional parameters. We can use string.find much as we did
our own find:

>>> fruit = "banana"
>>> index = string.find(fruit, "a")
>>> print index
1

This example demonstrates one of the benefits of modules---they help avoid collisions between the
names of built-in functions and user-defined functions. By using dot notation we can specify which
version of find we want.

Actually, string.find is more general than our version. it can find substrings, not just characters:

>>> string.find("banana", "na")
2

9/10/08 3:26 PMHow to Think Like a Computer Scientist: Learning with Python7. Strings

Page 9 of 15http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml

Like ours, it takes an additional argument that specifies the index at which it should start:

>>> string.find("banana", "na", 3)
4

Unlike ours, its second optional parameter specifies the index at which the search should end:

>>> string.find("bob", "b", 1, 2)
-1

In this example, the search fails because the letter b does not appear in the index range from 1 to 2 (not
including 2).

7.12 Character classification
It is often helpful to examine a character and test whether it is upper- or lowercase, or whether it is a
character or a digit. The string module provides several constants that are useful for these purposes.
One of these, string.digits, we have already seen.

The string string.lowercase contains all of the letters that the system considers to be lowercase.
Similarly, string.uppercase contains all of the uppercase letters. Try the following and see what you
get:

print string.lowercase
print string.uppercase
print string.digits

We can use these constants and find to classify characters. For example, if find(lowercase, ch)
returns a value other than -1, then ch must be lowercase:

def is_lower(ch):
 return string.find(string.lowercase, ch) != -1

Alternatively, we can take advantage of the in operator:

def is_lower(ch):
 return ch in string.lowercase

As yet another alternative, we can use the comparison operator:

def is_lower(ch):
 return 'a' <= ch <= 'z'

9/10/08 3:26 PMHow to Think Like a Computer Scientist: Learning with Python7. Strings

Page 10 of 15http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml

If ch is between a and z, it must be a lowercase letter.

Another constant defined in the string module may surprise you when you print it:

>>> print string.whitespace

Whitespace characters move the cursor without printing anything. They create the white space between
visible characters (at least on white paper). The constant string.whitespace contains all the
whitespace characters, including space, tab (\t), and newline (\n).

There are other useful functions in the string module, but this book isn't intended to be a reference
manual. On the other hand, the Python Library Reference is. Along with a wealth of other documentation,
it's available from the Python website, http://www.python.org.

7.13 String formatting
The most concise and powerful way to format a string in Python is to use the string formatting operator,
%, together with Python's string formatting operations. To see how this works, let's start with a few
examples:

>>> "His name is %s." % "Arthur"
'His name is Arthur.'
>>> name = "Alice"
>>> age = 10
>>> "I am %s and I am %d years old." % (name, age)
'I am Alice and I am 10 years old.'
>>> n1 = 4
>>> n2 = 5
>>> "2**10 = %d and %d * %d = %f" % (2**10, n1, n2, n1 * n2)
'2**10 = 1024 and 4 * 5 = 20.000000'
>>>

The syntax for the string formatting operation looks like this:

"<FORMAT>" % (<VALUES>)

It begins with a format which contains a sequence of characters and conversion specifications.
Conversion specifications start with a % operator. Following the format string is a single % and then a
sequence of values, one per conversion specification, seperated by commas and enclosed in
parenthesis. The parenthesis are optional if there is only a single value.

In the first example above, there is a single conversion specification, %s, which indicates a string. The
single value, "Arthur", maps to it, and is not enclosed in parenthesis.

In the second example, name has string value, "Alice", and age has integer value, 10. These map to
the two converstion specifications, %s and %d. The d in the second converstion specification indicates
that the value is a decimal integer.

In the third example variables n1 and n2 have integer values 4 and 5 respectively. There are four
converstion specifications in the format string: three %d's and a %f. The f indicates that the value should
be represented as a floating point number. The four values that map to the four converstion specifications
are: 2**10, n1, n2, and n1 * n2.

s, d, and f are all the conversion types we will need for this book. To see a complete list, see the String

http://www.python.org/
http://docs.python.org/lib/typesseq-strings.html

9/10/08 3:26 PMHow to Think Like a Computer Scientist: Learning with Python7. Strings

Page 11 of 15http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml

Formatting Operations section of the Python Library Reference.

The following example illustrates the real utility of string formatting:

i = 1
print "i\ti**2\ti**3\ti**5\ti**10\ti**20"
while i <= 10:
 print i, '\t', i**2, '\t', i**3, '\t', i**5, '\t', i**10, '\t', i**20
 i += 1

This program prints out a table of various powers of the numbers from 1 to 10. In its current form it relies
on the tab character (\t) to align the columns of values, but this breaks down when the values in the
table get larger than the 8 character tab width:

i i**2 i**3 i**5 i**10 i**20
1 1 1 1 1 1
2 4 8 32 1024 1048576
3 9 27 243 59049 3486784401
4 16 64 1024 1048576 1099511627776
5 25 125 3125 9765625 95367431640625
6 36 216 7776 60466176 3656158440062976
7 49 343 16807 282475249 79792266297612001
8 64 512 32768 1073741824 1152921504606846976
9 81 729 59049 3486784401 12157665459056928801
10 100 1000 100000 10000000000 100000000000000000000

One possible solution would be to change the tab width, but the first column already has more space than
it needs. The best solution would be to set the width of each column independently. As you may have
guessed by now, string formatting provides the solution:

i = 1
print "%-4s%-5s%-6s%-8s%-13s%-15s" %
 ('i', 'i**2', 'i**3', 'i**5', 'i**10', 'i**20')
while i <= 10:
 print "%-4d%-5d%-6d%-8d%-13d%-15d" % (i, i**2, i**3, i**5, i**10, i**20)
 i += 1

Running this version produces the following output:

i i**2 i**3 i**5 i**10 i**20
1 1 1 1 1 1
2 4 8 32 1024 1048576
3 9 27 243 59049 3486784401
4 16 64 1024 1048576 1099511627776
5 25 125 3125 9765625 95367431640625
6 36 216 7776 60466176 3656158440062976
7 49 343 16807 282475249 79792266297612001
8 64 512 32768 1073741824 1152921504606846976
9 81 729 59049 3486784401 12157665459056928801

http://docs.python.org/lib/typesseq-strings.html

9/10/08 3:26 PMHow to Think Like a Computer Scientist: Learning with Python7. Strings

Page 12 of 15http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml

10 100 1000 100000 10000000000 100000000000000000000

The - after each % in the converstion specifications indicates left justification. The numerical values
specify the minimum length, so %-13d is a left justified number at least 13 characters wide.

7.14 Glossary
compound data type:

A data type in which the values are made up of components, or elements, that are themselves
values.

index:
A variable or value used to select a member of an ordered set, such as a character from a string.

traverse:
To iterate through the elements of a set, performing a similar operation on each.

slice:
A part of a string (substring) specified by a range of indices. More generally, a subsequence of any
sequence type in Python can be created using the slice operator (sequence[start:stop]).

immutable:
A compound data types whose elements can not be assigned new values.

optional parameter:
A parameter written in a function header with an assignment to a default value which it will receive
if no corresponding argument is given for it in the function call.

default value:
The value given to an optional parameter if no argument for it is provided in the function call.

dot notation:
Use of the dot operator, ., to access functions inside a module.

docstring:
A string constant on the first line of a function or module definition (and as we will see later, in
class and method definitions as well). Docstrings provide a convinient way to associate
documentation with code. Docstrings are also used by the doctest module for automated testing.

whitespace:
Any of the characters that move the cursor without printing visible characters. The constant
string.whitespace contains all the white-space characters.

7.15 Exercises

1. Modify:

prefixes = "JKLMNOPQ"
suffix = "ack"

for letter in prefixes:
 print letter + suffix

so that Ouack and Quack are spelled correctly.

2. Encapsulate

fruit = "banana"

9/10/08 3:26 PMHow to Think Like a Computer Scientist: Learning with Python7. Strings

Page 13 of 15http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml

count = 0
for char in fruit:
 if char == 'a':
 count += 1
print count

in a function named count_letters, and generalize it so that it accepts the string and the
letter as arguments.

3. Now rewrite the count_letters function so that instead of traversing the string, it repeatedly
calls find (the version from section 8.10), with the optional third parameter to locate new
occurences of the letter being counted.

4. Which version of is_lower do you think will be fastest? Can you think of other reasons besides
speed to prefer one version or the other?

5. Create a file named stringtools.py and put the following in it:

def reverse(s):
 """
 >>> reverse('happy')
 'yppah'
 >>> reverse('Python')
 'nohtyP'
 >>> reverse("")
 ''
 >>> reverse("P")
 'P'
 """

if __name__ == '__main__':
 import doctest
 doctest.testmod()

Add a function body to reverse to make the doctests pass.

6. Add mirror to stringtools.py .

def mirror(s):
 """
 >>> mirror("good")
 'gooddoog'
 >>> mirror("yes")
 'yessey'
 >>> mirror('Python')
 'PythonnohtyP'
 >>> mirror("")
 ''
 >>> mirror("a")
 'aa'
 """

Write a function body for it that will make it work as indicated by the doctests.

7. Include remove_letter in stringtools.py .

9/10/08 3:26 PMHow to Think Like a Computer Scientist: Learning with Python7. Strings

Page 14 of 15http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml

def remove_letter(letter, strng):
 """
 >>> remove_letter('a', 'apple')
 'pple'
 >>> remove_letter('a', 'banana')
 'bnn'
 >>> remove_letter('z', 'banana')
 'banana'
 >>> remove_letter('i', 'Mississippi')
 'Msssspp'
 """

Write a function body for it that will make it work as indicated by the doctests.

8. Finally, add bodies to each of the following functions, one at a time

def is_palindrome(s):
 """
 >>> is_palindrome('abba')
 True
 >>> is_palindrome('abab')
 False
 >>> is_palindrome('tenet')
 True
 >>> is_palindrome('banana')
 False
 >>> is_palindrome('straw warts')
 True
 """

def count(sub, s):
 """
 >>> count('is', 'Mississippi')
 2
 >>> count('an', 'banana')
 2
 >>> count('ana', 'banana')
 2
 >>> count('nana', 'banana')
 1
 >>> count('nanan', 'banana')
 0
 """

def remove(sub, s):
 """
 >>> remove('an', 'banana')
 'bana'
 >>> remove('cyc', 'bicycle')
 'bile'
 >>> remove('iss', 'Mississippi')
 'Missippi'
 >>> remove('egg', 'bicycle')
 'bicycle'

9/10/08 3:27 PMHow to Think Like a Computer Scientist: Learning with Python7. Strings

Page 15 of 15http://openbookproject.net/thinkcs/python/english2e/ch07.xhtml

 """

def remove_all(sub, s):
 """
 >>> remove_all('an', 'banana')
 'ba'
 >>> remove_all('cyc', 'bicycle')
 'bile'
 >>> remove_all('iss', 'Mississippi')
 'Mippi'
 >>> remove_all('eggs', 'bicycle')
 'bicycle'
 """

until all the doctests pass.

9. Try each of the following formatted string operations in a Python shell and record the results:
a. "%s %d %f" % (5, 5, 5)

b. "%-.2f" % 3

c. "%-10.2f%-10.2f" % (7, 1.0/2)

d. print " $%5.2f\n $%5.2f\n $%5.2f" % (3, 4.5, 11.2)

10. The following formatted strings have errors. Fix them:
a. "%s %s %s %s" % ('this', 'that', 'something')

b. "%s %s %s" % ('yes', 'no', 'up', 'down')

c. "%d %f %f" % (3, 3, 'three')

Table of Contents | Index

http://openbookproject.net/thinkcs/python/english2e/dex.xhtml
http://openbookproject.net/thinkcs/python/english2e/index.xhtml

