The Electronic Revolution: Part 2

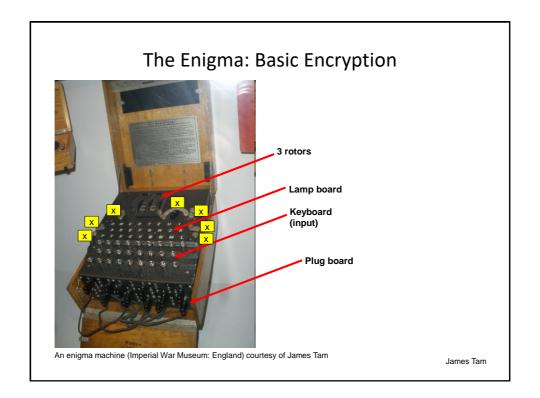
An overview of the computers and computing devices that relied solely on electronic means for completing calculations.

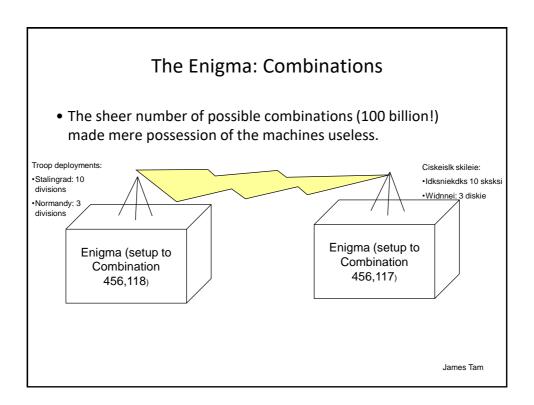
James Tam

World War II: Code Breaking And Computing

The Allies

- •British code breaking machines/projects
- The machines of Bletchley Park ('bombs')
- The Robinsons
- The Colossus (and the Colossi!)


The Axis


The enigma machines (but commercial versions were purchased by other nations e.g. Poland->England)

Later:
Geheimschreiber
(secret writer)

The Enigma

- Developed by Germany between the two world wars (WWI: 1914 1918, WWII: 1939 1945).
- It was designed to convert ordinary language ("plain text") into an encoded ("encrypted form") to be sent via radio or telephone lines.
- There were two version: one for the military and one for business.
 - The commercial machines were made publically available in 1927.
 - The German military began to use the Enigma code on one of their radio stations in 1928.

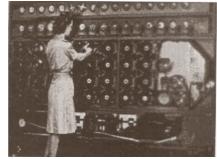
The Allies (British): Decrypting The Enigma Encryption

- Simply possessing one of the Enigma machines wasn't sufficient.
- Nor was it sufficient to know the code settings used for a particular time.
- Poland:
 - When the German military began to broadcast radio transmission (1928) using the Enigma encoded messages. The Polish radio operators alerted the Cipher Bureau.
 - Polish Cipher Bureau: purchased and modified a commercial copy of the Enigma.
 - 1928 1931: little headway was made and the project was abandoned in 1931.

The Allies (British): Decrypting The Enigma Encryption: 2

 1932: Martin Rejewski: a mathematician was assigned to study the encryption problem again.

http://ulm.ccc.de


- His initial efforts resulted in some success and additional people were added to the project.
 - ~75% of the German messages were deciphered.
 - "Encryption: technology race" between the Polish and German technological developments.

James Tam

The Allies (British): Decrypting The Enigma Encryption: 3

- 1939: it was evident that war was imminent: the policy of 'appeasement' was not working.
 - The Poles called a meeting of the intelligence agencies of: Poland,
 France and England

Polish built bomba("bomb") from "A History of Computing Technology" (Williams)

The British Code And Cipher School

 Worked on deciphering the German codes at Bletchley Park outside of London:

- Intelligence work involved a great deal of secrecy:
 - Information was strictly on a "need to know basis" for the people working there.
 - Even now much of the information is still classified "Official Secrets Act": http://www.legislation.gov.uk/ukpga/1989/6/contents

James Tam

The British Code And Cipher School (2)

- The combination of secrecy surrounding the work at Bletchley Park and the code names used, 'work on bombs' resulted in a great deal of confusion.
 - "...but the only thing these bombs destroyed was the German Air Force message security" (Williams).
- What is known:
 - The British constructed several new versions of their own 'bombs' which were based on the Polish original.

Alan Turing (1912 – 1954)

- A distinguished British Mathematician from Cambridge
 - He produced distinguished first-rate work (Williams)
- After graduation he remained to work at the college and produced a famous paper:
 - "On Computable Numbers with an Application to the Entscheidungsproblem"
 - His work was known to scholars throughout the world.
 - 1936 he spent the year at Princeton: (Einstein, von Neumann).
- During the war he worked at Bletchley Park as a code-breaker (contributed to the design of the machinery as well as applying his Mathematical knowledge)
 - An eccentric person
 - A 'pure' scholar

James Tam

Image from "History of Computing Technology" (Williams)

Alan Turing (1912 – 1954): 2

- Later events:
 - After his death he was granted a pardon by the British government near the end of 2014 (he was convicted in 1952 and died by poisoning in 1954).
 - https://www.bbc.com/news/technology-25495315 (last accessed 2024).
 - Creation of an extremely prestigious award "ACM A. M. Turing Award"
 - https://amturing.acm.org/ (last accessed 2024).
- For more information: "Allan Turing: The Enigma" by Hodges
 A. (Simon and Schuster)

Movies

- For entertainment (movie about Turing the work of the Britich code breakers):
 - "Breaking the code"
 - IMDB information: https://www.imdb.com/title/tt0115749/?ref_=fn_all_ttl_1
 - "The imitation game"
 - IMDB Information plus preview: https://www.imdb.com/title/tt2084970/?ref_=nv_sr_srsg_0_tt_8_nm_0_in_0_q_the%2520imit
 - Legal link to full movie (requires library authentication): https://media3-criterionpic-com.ezproxy.lib.ucalgary.ca/htbin/wwform/006?T=2166936E&ALIAS=2166936E_EN.KF&M=0_ukjtb8wv&DSTYLE=0b

James Tam

The Robinsons

- 1942 (mid year): staffing levels at Bletchley Park were such that different sections (groups) were formed.
 - Each section was housed in a 'hut'.

www.bbc.co.uk

The Robinsons (2)

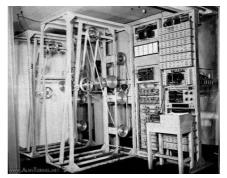
- Division of work into huts:
 - Groups would work on different problems in different huts.
 - Alternatively different groups would work on the same problem in different huts but using different approaches.
 - Only the hut supervisors would communicate. (Top Secret: need to know)
- By this time the bombs were too slow to be used in the decryption process and new techniques needed to be developed.
- General Post Office (Telephone Division)
 - Dollis Hill: West London
 - Mr. T.H. Flowers: head of a group working on telephone switching problems.

James Tam

The Robinsons (3)

- Commissioned: several pieces of machine to be built for the people at Bletchley Park.
- What the Dollis Hill people thought: designing a new photoelectric paper tape reader to be used in a new telegraph.

• M.H.A. Newman:


- Envisioned a new machine that could automate a part of the decryption process.
- Dr. C.E. Wynn-Williams: known for his previous work designed the machine envisioned by Newman

The Robinsons (3)

• Machine name: Heath Robinson (unusual device named for an unusual cartoonist).

Copyright unknown

Heath Robinson computer: http://www.rutherfordjournal.org

James Tam

The Robinsons (4)

- Known specifications:
 - Much of the information is still 'classified' but some details have been released.
 - Partly implemented using vacuum tubes and telephone relays.
 - Not a general purpose computer.
 - Evaluate some Boolean operations on information read from two endless loops (punched paper).

The Robinsons (5)

- Quickly constructed
 - Unreliable
 - 'Proof of concept': high speed electronic devices could still aid in the decoding process.
 - At least three machines constructed: Heath Robinson, Peter Robinson, Robinson and Cleaver.

Peter Robinson http://www.english-heritage.org.uk

Robinson and Cleaver www.skyscrapercity.com

James Tam

The Colossus, Williams

- Mr. T.H. Flowers (London Post Office: tape reader project)
 - Brought directly into the project as an electronics expert to help redesign the Robinson machinery to make it more reliable (vacuum tubes over relays).
 - A completely new all electronic design (1,500 vacuum tubes) was used.
 - The improved reliability along with the use of electronics over mechanical parts resulted in a significant speed increase

- First used in operation December 1943.

The Colossus (2)

- The first job given to the machine was completed in 10 minutes ("the savior machine" hailed as "The Colossus").
- Some of the known specifications (many still 'classified'):
 - Bi-quinary storage of information in the registers.
 - An internal clock was used to synchronize operations.
 - Controlled by a plug board and wires.
 - Card readers (Robinsons) were used as input.
- Due to foresight and very good planning the second Colossus machine was built in less than a year!
 - Recall first Colossus completed Dec 1943
 - March 1944: Many more! < June 1944

James Tam

The Colossus (3)

- It's believed that up to ten were fully functional at the end of the Second World War.
- The eventual fate of most the machines is still unknown.
 - One machine was moved to Iran (for intelligence gathering)
- Similar to the Robinsons: the Colossi were required to complete high speed Boolean operations on data read from tape.
- In some ways the forerunner of the modern computer:
 - Because the basic mathematical operations can implemented using Boolean logic, in theory the machines could be general purpose (proof: base 10 multiplication performed),
 - Conditional branching possible: different plug board instructions could be executed depending upon a value stored in one of the registers (still 'classified' so details are sketchy).

Video: British Code Breaking Machine

- Colossus and other code breaking devices developed at Bletchley (last accessed October 2024)
 - https://www.youtube.com/watch?v= ZJXb eSvwl

James Tam

American 'Bombs'

- Few details are available.
- One of the last remaining American 'bomb' code breakers resides at the National Museum of American History (Smithsonian Institution).
 - Copy (identical?) of British machines.
- Other hints at American code-breaking efforts
 - Alan Turing visiting the U.S. during the war (Bell Labs)
 - "...the people who should be knowledgeable in such matters [code breaking efforts] (even if they won't admit it) acknowledge that the Colossi were far in advance of anything available in the States at the time." (Williams)

Option External Video: Overall Summary

- Captures the essence of many machines discussed so far and some others that will be covered in a later section (last accessed 2024).
 - https://www.youtube.com/watch?v=qundvme1Tik

James Tam

After This Section You Should Now Know: All Sections

- What is the difference between electronic and mechanical/electro mechanical computing devices
- What were the three main categories of electronic computers
- What was the first electronic computer (partially and fully completed)
- The technical specifications of the first electronic computers
- The general appearance and cost/resources used in the building of the first electronic computers
- The history behind the names of the first electronic computers
- Who were the people behind these computers and what were some of the major events in their lives
- What were the approximate dates/time frames of significant developments in the mechanical monsters

After This Section You Should Now Know: British

- The Enigma: who developed it, what was it used for, how did it work
- The British code breaking machines
 - What were the 3 categories or families of code breakers
 - The events leading up to the development of the machines at Bletchley Park
 - The events leading up to the development of the Robinson machines and the technical specifications of these machines
 - The events leading up to the development of the Colossus and the second Colossi
 - The technical specification of the Colossi
 - What were the American code breaking efforts during the second world war

James Tam

References

- "A history of computing technology", Michael R. Williams 2nd Ed (IEEE 1997)
- "Allan Turing: The Enigma" by Hodges A. (Simon and Schuster)
- https://www.nsa.gov/Portals/70/documents/newsfeatures/declassified-documents/crypto-almanac-50th/The Breaking of Geheimschreiber.pdf

Copyright Notice

• Unless otherwise specified the clipart images come from www.colourbox.com