Page 5 of 7

Tip for helping students with out providing a solution
One approach: help them visualize the problem
Common problem: how to determine the (row, column) of the neighbors when checking the rules (or even more rudamentary: how do I ‘check’ the neighbors).
Use specific examples to help them find the general solution
E.g. making change by returning: quarters, dimes, pennies and minimizing the amount of change returned.
What change is given back when $0.50 is owed?
What change is given back when $0.53 is owed?
What change is given back when $0.61 is owed?
Etc. (until the general pattern is recognized)
“Draw a diagram” – but JT’s tip is to draw a diagram which labels everything (i.e. row, columns for a list) and represents a specific example.
Applying both techniques you can use as a reference the spreadsheet ‘biosphere’
Example problem: determining the (row, column) coordinates of the neighbors for any of the 100 squares.
[image:]
Q1: How many neighbor exist for the square marked '?'				
Q2: How did you determine what are the neighbors?
Q3: What are the (row,column) coordinates of the neighbors of '?'	
Common problem: what if the neighbor is ‘outside’ the bounds of the biosphere list?
To determine what’s ‘outside’ first define what’s ‘inside’	
(If they have trouble then show them the diagram of the list and ask again what’s defined as ‘inside’).
[image:]
Once they are able to distinguish inside from outside (range of the row,column references) then remind them of the Boolean function you went over.
Student question: are separate functions needed to handle the neighbor count for locations that border on edges or the corners.
Ideally the program should be properly handle the count with one function for all cases.
But if that’s too much for student’s to visualize then separate functions for the special cases is acceptable.

Student question: How are the birth and death rules applied at the same time using the ‘oldWorld’ and ‘newWorld’.
· Illustrate with a diagram but not code
· [image:]

Cases in the right hand column (data in old world doesn’t change while we run the code for the 4 cases)
Determine birth/death at (0,0), critter at (0,0) dies of loneliness in the new world.
In oldWorld critter at (0,0) is untouched.
Determine birth/death at (0,2), critter at (0,2) dies of loneliness in the new world.
In oldWorld critter at (0,2) is untouched.
Determine birth/death at (1,0), critter at (1,0) dies of loneliness in the new world.
In oldWorld critter at (1,0) is untouched.
Now when the program tries to determine birth/death at (1,1), program examines the pattern in the oldWorld not the newWorld
In the image in the left column examining location (1,1) in green
This location has 3 neighbors in the oldWorld so the critter at (1,1) remains alive in the newWorld (last image in the column on the right)
Summary of the scan for (0,0) to (1,2)
Although 3 deaths occurred at locations that bordered (1,1) the 3 deaths appear to occur at the same time that the count for this location is made thus the rules appear to be applied at the same time.
After all 100 squares are scanned then the contents of the oldWorld are copied to the newWorld.
The next turn the pattern is scanned in the oldWorld while new births/deaths are made in the newWorld.
Student question:
How does user input affect the debugging mode.
It does not directly cause debugging messages to appear
Why? Because if the mode is already on then selecting ‘d’ or ‘D’ will turn off the display i.e. debugOn is now set to False.
User input merely ‘toggles’ debugging mode
Pressing ‘d’ or ‘D’ when the flag is off will turn it on
Pressing ‘d’ or ‘D’ when the flag is on will turn it off
Example of a function that changes negative numbers to positive and vice versa (zero unaffected).
The branch isn’t really needed except to display output of course but it’s illustrating how state is checked and instructions execute
num = 7

def flip():
 global num
 num = int(“enter new value for num: “))
 If (num < 0):
 Print(“Negative becomes positive”)
 Num = num * -1
 If (num > 0):
 Print(“Positive becomes negative”)
 Num = num * -1

def useNum():
 if (num < 0):
 print(“You are negative today”)
 if (num > 0):
 print(“Sunny days”)

[bookmark: _GoBack]Student question:
How can we implement the debugging mode.
Here’s a couple of acceptable approaches.
To be awarded credit the program has to:
1. Allow debugging mode to be toggled (off becomes on, on becomes off)
If (debugOn == True):
 debugOn = False
Else:
 debugOn = True
2. Display a message, any message when the debugging mode is set to true.
Example 1 for type of debugging message: if the flag is set to true show the sequence of function calls (“stack trace” but don’t use this term with students).
SIZE = 10
debugOn = False

def oneEmpty():
 if (debugOn == True):
 print("<<< oneEmpty() >>> ")
 ...

def display(turn,oldWorld,newWorld):
 if (debugOn == True):
 print("<<< display() >>> ")
 ...
Example 2: display information about the state of the game e.g. the (row/column) on which a neighbor count is performed showing the relative coordinates for the neighboring squares as well as the total critter count for the neighbors.
Hit enter to continue ('q' to quit): d
<<< DEBUG messages ON! >>>
Counting the after case
(ROW,COL): 0/0
(row,col): -1/-1
(row,col): -1/0
(row,col): -1/1
(row,col): 0/-1
(row,col): 0/0
(row,col): 0/1
(row,col): 1/-1
(row,col): 1/0
(row,col): 1/1
ROW/COL 0/0 count=0
###

(ROW,COL): 0/1
(row,col): -1/0
(row,col): -1/1
(row,col): -1/2
(row,col): 0/0
(row,col): 0/1
(row,col): 0/2
(row,col): 1/0
(row,col): 1/1
(row,col): 1/2
ROW/COL 0/1 count=0

image3.png
"

Old world (don’t touch until all 100 squares scanned

Start of scan, birth/death (new world)

o 1 2 3 e 1 2 3
° B B
1 B
2
(0,0) scanned (new world)
e 1 2 3
° B
1 B
2
(0,2) scanned (new world)
e 1 2 3
e
1 B
2
(1,0) scanned (new world)
e 1 2 3
e
1
2
(1,1) scanned (new world)
e 1 2 3
e
1 B

image1.png
SHamMYMON®Q

image2.png
VeNOWEWNR O

Inside’ the list

