
6/10/2025

Decomposition/functions 1

Recursion

• A function calling itself directly or 
indirectly in a repetitive fashion.

James Tam

Basic Definition Of Recursion

• “A programming technique whereby a function calls itself 

either directly or indirectly.”



6/10/2025

Decomposition/functions 2

Direct Call

function

def fun ():

...

fun ()

...

Indirect Call

f1

f2



6/10/2025

Decomposition/functions 3

Indirect Call

f1

f2

f3

…

fn

Indirect Call (2)

Name of the online example: 1simpleRecursive.py

def fun1():

print("\tfun1()")

fun2()

def fun2():

print("\tfun2()")

fun1()

fun1()



6/10/2025

Decomposition/functions 4

Requirements For Sensible Recursion

1) Base case

2) Progress is made (towards the base case)

sum (2)

if (2 == 1)

return 1 

sum (3)

if (3 == 1)

return 1 

Example Program: 2sumSeries.py
def sum(no):

if (no == 1):
return 1

else:
return (no + sum(no-1) )

def start():
last = input ("Enter the last 

number: ")
last = (int)last
total = sum(last)
print ("The sum of the series 

from 1 to", last, "is", 
total)

start()

sumSeries

total = sum(3)

F

else

return (3 + sum (3 – 1))

F

else

return (2 +sum (2 – 1));

sum (1)

if (1 == 1)

return 1 

T

1

3

6



6/10/2025

Decomposition/functions 5

When To Use Recursion

• When a problem can be divided into steps.

• The result of one step can be used in a previous step.

• There is a scenario when you can stop sub-dividing the 
problem into steps (step = recursive call) and return to a 
previous step. 
– Algorithm goes back to previous step with a partial solution to the 

problem (back tracking)

• All of the results together solve the problem.

When To Consider Alternatives To Recursion

• When a loop will solve the problem just as well

• Types of recursion (for both types a return statement is 
excepted)
– Tail recursion

• The last statement in the function is another recursive call to that function 
This form of recursion can easily be replaced with a loop.

– Non-tail recursion

• The last statement in the recursive function is not a recursive call.
– Excludes t

• This form of recursion is very difficult (read: impossible) to replace with a loop.



6/10/2025

Decomposition/functions 6

Example: Tail Recursion

• Tail recursion: A recursive call is the last statement in the 
recursive function.

• Name of the online example: 3tail.py

def tail(no):

if(no <= 3):

print (no) 

tail(no+1)

return()

tail(1)

Example: Non-Tail Recursion

• Non-Tail recursion: A statement which is not a recursive call to 
the function comprises the last statement in the recursive 
function.

• Name of the online example: 4nonTail.py

def nonTail(no):

if (no < 3):

nonTail(no+1)

print(no)

return()

nonTail(1)



6/10/2025

Decomposition/functions 7

James Tam

Error Handling Example Using Recursion

• Name of the online example: 5errorHandling_Loop.py

– Iterative/looping solution (month must be between 1 – 12)

JAN = 1

DEC = 12

month = -1

while((month < JAN) or (month > DEC)):

month = int(input("Enter birth month (%d-%d): " \

%(JAN,DEC)))

print(month)

James Tam

Error Handling Example Using Recursion (2)

– Name of the online example: 
6errorHandling_Recursive.py

– Recursive solution (day must be between 1 – 31)

MIN = 1

MAX = 31

def promptDay():

day = int(input("Enter day of birth (%d-%d): " 
%(MIN,MAX)))

if ((day < MIN) or (day > MAX)):

day = promptDay()

return(day)

day = promptDay()

print(day)



6/10/2025

Decomposition/functions 8

James Tam

When To Use Iteration Or Recursion

• Rule of thumb for using iteration: if you can implement a 
solution using a loop then you should do so.

• When to employ a recursive solution: a loop cannot be 
employed.
– “Back tracking” is needed. 

– Back tracking: When the repetition (whether via the iterations of a loop 
or a function calling itself over and over) ends the actual work of solving 
the problem occurs.

– Examples: Traversing a maze, traversing a file system (folders/directories 
containing other folders).

James Tam

• Picked the wrong direction in the maze?

• After repeatedly traversing the maze (going up, left, right, 
down) and you hit a dead end!

• You must “back track” (retrace your steps)

Applying Recursion: Traversing A Maze (Tutorial)



6/10/2025

Decomposition/functions 9

Applying Recursion: Traversing A Directory/Folder 
Structure (Chart: James Tam)

Folder

Storage 
drive

1

File

Folder

2

File

No more folders: Stop 
function calls and 
return to previous time 
function was called

Pseudo code
traverse(folder reference)

If (reference leads a folder)
traverse(go to left folder)
traverse(go to the right folder)

end if
return()

Folder

3

File File

3 4

5

6 7

Etc.

File

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation 
are used with permission from Microsoft.”



6/10/2025

Decomposition/functions 10

You Should Now Know

• What is a recursive computer program

• How to write and trace simple recursive programs

• What are the requirements for recursion/What are the 
common pitfalls of recursion


