
6/10/2025

Decomposition/functions 1

Classes And Objects

• Defining new types of variables that can
have custom attributes and capabilities

James Tam

Composites

• What you have seen
– Lists

– Strings

– Tuples (depends upon semester)

• What if we need to store information about an entity with
multiple attributes and those attributes need to be labeled?
– Example: Client attributes = name, address, phone, email

• The best option you have seen thus far is a list as it’s composite
(each field is an attribute) and it doesn’t have to be
homogenous (attributes can store different types of
information)

6/10/2025

Decomposition/functions 2

Some Drawbacks Of Using A List

• Which field contains what type of information? This isn’t
immediately clear from looking at the program statements.
client = [“xxxxxxxxxxxxxxx",

“0000000000",

“xxxxxxxxx",

0]

• There isn’t a way to specify rules about the type of information
to be stored in a field e.g., a data entry error could allow
alphabetic information (e.g., 1-800-BUY-NOWW) to be entered
in the phone number field.

The parts of a composite list can

be accessed via [index] but they

cannot be labeled (what do these

fields store?)

James Tam

New Term: Class

• Can be used to define a generic template for a new non-
homogeneous (elements not always same type) composite
type.

• It can label and define more complex entities than a list.

• This template defines what an instance (example) of this new
composite type would consist of but it doesn’t create an
instance.

Copyright information unknown

6/10/2025

Decomposition/functions 3

James Tam

Classes Define A Composite Type

• The class definition specifies the type of information (called
“attributes”) that each instance (example) tracks.

Name:

Phone:

Email:

Purchases:

Name:

Phone:

Email:

Purchases:

Name:

Phone:

Email:

Purchases:

New term:
Attribute

Defining A Class1

• Format:
class <Name of the class>:

def __init__(self):

self.name of first field = <default value>

self.name of second field = <default value>

• Example (attributes are explicitly named):
class Client:

def __init__(self):

self.name = "default"

self.phone = "(123)456-7890

Describes what information

that would be tracked by a

“Client” but doesn’t yet

create a client variable

Note the convention: The

first letter is capitalized.

• Defining a ‘client’ by using a list (# mapped to a attribute is not self-
evident, determined by the index).
client = ["xxxxxxxxxxxxxxx",

[0]

1 It’s analogous to defining a function via ‘def’, the function definition specifies instructions when the function is called.
The class definition specifies information to be stored should an instance of the class be declared but doesn’t actually create
an instance.

6/10/2025

Decomposition/functions 4

Creating An Instance Of A Class

• Creating an actual instance (instance = object) is referred to as

– Instantiation: declaring a variable whose type is new type that you
defined in the class definition (e.g. creating a new Client variable).

• Object: it is the variable whose type is the class you defined
e.g. firstClient is a variable whose type is Client.
– Similar to lists: the creation of an object creates a reference and the

actual variable (object) Format:
<reference name> = Name of class>()

• Example:
firstClient = Client()

instantiation

New terms:

• Instance

• Instantiation

• Object

Defining A Class Vs. Creating An Instance Of That
Class

• Defining a class (~List type)
– A template that describes that

class: how many fields, what
type of information will be
stored by each field, what
default information will be
stored in a field (and
more…coming later)

• Creating an object
(~creating a new list)
– Instances of that class (during

instantiation) which can take
on different forms.

Image copyright unknown

Example:
class Client:

def __init__(self):
self.name = "default"
self.phone = "(123)456-7890

Example:
firstClient = Client()

6/10/2025

Decomposition/functions 5

The Client List Example Implemented Using
Classes And Objects

• Name of the online example: 1client.py

class Client:

def __init__(self):

self.name = "default"

self.phone = "(123)456-7890"

self.email = "foo@bar.com"

self.purchases = 0

Exactly as-is i.e. no

spaces, 2 underscores

The Client List Example Implemented
Using Classes (2)

def start():

firstClient = Client()

firstClient.name = "James Tam"

firstClient.email = "tam@ucalgary.ca"

print(firstClient.name)

print(firstClient.phone)

print(firstClient.email)

print(firstClient.purchases)

start()

Changes 2 attributes:
name = "James Tam"
email = "tam@ucalgary.ca"

6/10/2025

Decomposition/functions 6

James Tam

Important Details

– Accessing attributes inside the methods of the class.

• MUST preface the attribute with ‘self’

class Client:

def __init__(self):

self.name = "default"

(More on the ‘self’ keyword later in

this section)

– Accessing attributes outside the methods in the body of the class (e.g.
start() function)

• Must create a reference to the object first
firstClient = Client()

• Then access the object through that reference
firstClient.name = "James Tam"

Format:
self.<attribute name>

Format:
<Ref. name> = <Class name>()

Format:
<Ref. name>.<attribute name>

What Is The Benefit Of Defining A Class?

• It allows new types of variables to be declared.

• The new type can model information about most any arbitrary
entity:

–Car

–Movie

–Your pet

–A bacteria or virus in a medical simulation

–A ‘critter’ (e.g., monster, computer-controlled player) a video game

–An ‘object’ (e.g., sword, ray gun, food, treasure) in a video game

–A member of a website (e.g., a social network user could have
attributes to specify the person’s: images, videos, links, comments and
other posts associated with the ‘profile’ object).

6/10/2025

Decomposition/functions 7

What Is The Benefit Of Defining A Class (2)

• Unlike creating a composite type by using a list a
predetermined number of fields can be specified and those
fields can be named.
– This provides an error prevention mechanism

class Client:

def __init__(self):

self.name = "default"

self.phone = "(123)456-7890"

self.email = "foo@bar.com"

self.purchases = 0

firstClient = Client()

print(firstClient.middleName) #Error: no such field defined

James Tam

Revisiting A Previous Example:
__init__()

• Python:
– __init__() is used to initialize the attributes

• Classes have a special function (actually ‘method’ – more on
this later in this section) called a constructor that can be used
to initialize the starting values of a class to some specific
values.

• This method is automatically called whenever an object is
created e.g. bob = Person()

• Format:
class <Class name>:

def __init__(self, <other parameters>):

<body of the method>

• Example:
class Person:

def __init__(self):

self.name = "No name"

This calls the
init()
constructor

New terms:

•__init__()
•Constructor

6/10/2025

Decomposition/functions 8

Classes Have Attributes

ATTRIBUTES
Name:
Phone:
Email:
Purchases:

BEHAVIORS
Open account
Buy investments
Sell investments
Close account

Image of James courtesy of James Tam

But Also Behaviors

A client

New Term: Class Methods (“Behaviors”)

• Functions: not tied to a composite type or object
– The call is ‘stand alone’, just name of function

– E.g.,

– print(), input()

• Methods: must be called through an instance of a composite1.
– E.g.,

aList = []

aList.append(0)

– Unlike the above pre-created functions (e.g. append), the methods that
you define with your classes can be customized to do anything that a
regular function can.

• Functions that are associated with classes (call through an
instance) are referred to as methods.

List reference

Method operating on the list

1 Not all composites have methods e.g., arrays in ‘C’ are a composite but don’t have methods

6/10/2025

Decomposition/functions 9

James Tam

Defining Class Methods

Format:
class <classname>:

def <method name> (self, <other parameters>):

<method body>

Example:
class Person:

def __init__(self):

self.name = "I have no name :("

def sayName (self):

print ("My name is...", self.name)

Unlike functions, every

method of a class must

have the ‘self’ parameter

(more on this later)

Reminder: When the attributes are

accessed INSIDEs the methods of a

class they MUST be preceded by the

suffix “.self”

James Tam

Defining Class Methods: Full Example

• Name of the online example: 2personV1.py (has a method
other than just the constructor).

class Person:

def __init__(self):

self.name = "I have no name :("

def sayName(self):

print("My name is...", self.name)

def start(): #Access outside class requires a reference

aPerson = Person()

aPerson.sayName()

aPerson.name = "Big Smiley :D"

aPerson.sayName()

start()

6/10/2025

Decomposition/functions 10

James Tam

Calling A Method Inside Another Method Of The Same
Class

• Similar to how attributes must be preceded by the keyword
‘self’ before they can be accessed so must the classes’
methods:

• Example:
class Bar:

def __init__(self):

self.x = 0

def method1(self):

print(self.x) #Accessing attribute ‘x’

def method2(self):

self.method1() #Calling method ‘method1’

James Tam

Why Is ‘Self’ Needed

• Name of the full online example: 3need_for_self.py

class Person:

def __init__(self,aName):

self.name = aName

def sayFriend(self,myFriend):

print("Calling object's name %s" %(self.name))

print("name of friend is %s" %(myFriend.name))

def start():

stacey = Person("Stacey")

jamie = Person("Jamie")

stacey.sayFriend(jamie)

start()

6/10/2025

Decomposition/functions 11

James Tam

Whose Method Is Called: Stacey’s Due To Self

def sayFriend(self,myFriend):

print("Calling object's name %s" %(self.name))

print("name of friend is %s" %(myFriend.name))

def start():

stacey = Person("Stacey")

jamie = Person("Jamie")

stacey.sayFriend(jamie)

Self distinguishes the object whose method is called from other object(s)

James Tam

Whose Method Is Called: Jamie’s Due To Self

def sayFriend(self,myFriend):

print("Calling object's name %s" %(self.name))

print("name of friend is %s" %(myFriend.name))

def start():

stacey = Person("Stacey")

jamie = Person("Jamie")

jamie.sayFriend(stacey)

Self distinguishes the object whose method is called from other object(s)

6/10/2025

Decomposition/functions 12

James Tam

Self Is Still Needed Even With A Single Object

def cannotSay(self):

print("My name is %s" %(name))

def start():

stacey.cannotSay()

• Reference to the
identifier ‘name’

• Not specified as
‘self.name’
• It’s not treated as an

attribute.

Check local
scope for
variable
declaration

Check global
scope for
variable
declaration

Error: ‘Name’ is neither
local nor global

James Tam

Including Out Of Scope Reference Name Inside Of The Class

• Name of the full online example:
4need_for_reference_name.py
– Inappropriately including reference name in method.

class Person:
def __init__(self,aName):

self.name = aName

def doesNotSetName(self,newName):
stacey.name = newName
jamie.name = newName

def start():
stacey = Person("Stacey")
jamie = Person("Jamie")
stacey.doesNotSetName(jamie)

Scope

Problem

6/10/2025

Decomposition/functions 13

James Tam

Excluding The Reference Name

• You wouldn’t do this now (I hope!)
def start():

aList1 = []

aList2 = []

append(321) #No such ‘function’

James Tam

Excluding Reference Name Outside Of Class

def start():

stacey = Person("Stacey")

jamie = Person("Jamie")

#print("What would the output be? Why?")

#print(name)

6/10/2025

Decomposition/functions 14

James Tam

Using ‘Self’ Outside Of The Class

• Name of the full online example:
5mixing_up_self_with_references.py

def start():
stacey = Person("Stacey")
jamie = Person("Jamie")

#self.name = "Jamie’s friend"

Recall: ‘self’ must be (and really can only be) used
within a class definition.

James Tam

Using ‘Self’ Outside Of The Class

• Name of the full online example:
5mixing_up_self_with_references.py

def start():
stacey = Person("Stacey")
jamie = Person("Jamie")

#self.name = "James friend"

• The identifier ‘self’ is not known in
this function.

• The same problem if the identifier
‘name’ is used without a reference
name

Self: Not
declared locally

Self: Not
declared globally

6/10/2025

Decomposition/functions 15

James Tam

Decomposing Large Programs: By File

• Because real life programs are large, they are not only divided
into functions but also split into multiple files.

• Example: There’s so many files for the game RPG Icewind Dale
that they are distributed among several folders (multi-file
install is not unique to this game).

James Tam

Python File Decomposition: Modules

• Each module is a separate library of python features (functions,
class definitions).

• Recall: the ‘Random’ module:
Name of file:
random.py

File contains 1 or
more functions

6/10/2025

Decomposition/functions 16

James Tam

Review: Using The Code In A Module

• Add the name ‘Random’ to your program
– Format:

import <Module/filename>

– Example:

import random

• Running a function/method from this module
– Format:

<Module/filename>.<function/method call>

– Example:

print(random.randrandint(1,6))

James Tam

• Name of the folder containing the full online example:
1st_module_example

• To start the whole program run the module with the ‘start’ function (in
this case it is Driver.py).

Filename: Draw.py

Defining Your Own Module

def rectangle():
print("""
#########
#########
#########
#########
#########
#########
#########
#########""")

def right():
print("""
#
###
######""")

def triangle():
print("""

#
###

#####""")

6/10/2025

Decomposition/functions 17

James Tam

Defining Your Own Module (2)

– Filename: Driver.py

import Draw

def start():
Draw.rectangle()
Draw.right()
Draw.triangle()

start()

Adding the name
‘Draw’ to your
program

Running functions from
the ‘Draw’ module
(similar to running the
random methods this
requires <module
name>.<method name>

James Tam

Naming The Starting Module

• Recall: The function that starts a program (first one called)
should have a good self-explanatory name e.g., “start()” or
follow common convention e.g., “main()”

• Similarly the file module that contains the ‘start()’ or
‘main()’ function should be given an appropriate name e.g.,
“Driver.py”, “Start.py”, “Main.py” (it’s the ‘driver’ of the
program or the starting point)

def start():
#Instructions

start()

Filename: “Driver.py”

6/10/2025

Decomposition/functions 18

James Tam

Importing Modules Containing Class Definitions

• A common convention is to have the module
(file) name match the name of the class e.g.
file/module ‘Person.py’ contains definition
for “class Person”

• Approach 1: import just the name of the file
containing the class definition.
– Example: import PersonFile (similar this

previous approach: import Random)

– Advantage:

• Allows access to other ‘names’ in the file e.g. other utility
methods, constants etc.

• Recall Random.py contains: Random.randrange(0,6),
Random.randint(1,6)

– Disadvantage:

• The name of the file must be included along with the
name of the function/method/attribute e.g.
Random.randint(1,6)

def randint(start,end):

def randrange(start,end):

File: Random.py

James Tam

Importing Modules Containing Class Definitions

• Approach 2: import just the name of the file
containing the class definition.
– Example: from PersonFile import Person

(or using this approach with an existing library from
Random import randint)

– Advantage:

• Imports only the names needed (reduced conflicts
between the names in the module being imported and
the file where the import is included).

– from Random import randint

– #only imports the randint name

6/10/2025

Decomposition/functions 19

James Tam

Approach 1: An Example

• Name of the folder complete online example:
2nd_oo_module_example
– Only the module/filename is imported so other names (e.g. class,

method, function name) must be prefaced by the module name
(‘context’ needed).

class Person:
def __init__(self):

self.name = "I have no name :("
def sayName(self):

print("My name is...", self.name)

def fun():
print("called fun")

Filename:
PersonFile.py

import PersonFile

def start():
#Only filename imported
aPerson = PersonFile.Person()
aPerson.sayName()
PersonFile.fun()

start()

Filename:
Driver.py

James Tam

Approach 2: An Example

• Name of the folder complete online example:
3rd_oo_module_example
– More specific: only imports the class name, other names (e.g. function,

global names) cannot be accessed.

• The class name doesn’t need to be prefaced by the module name.
– References to the imported name are shorter.

• Reduces the possibility of naming conflicts e.g. if there’s already a function
‘fun’ in Driver.py (won’t conflict with ‘fun’ in Person).

class Person:
def __init__(self):

self.name = "I have no name :("
def sayName(self):

print("My name is...", self.name)

def fun():
print("called fun")

Filename:
PersonFile.py

from PersonFile import Person

def start():
aPerson = Person()
aPerson.sayName()

start()

Filename:
Driver.py

6/10/2025

Decomposition/functions 20

James Tam

Recall: Objected Approach Ties Behaviors (Methods) To
Classes

• Capabilities are defined in class Flyer mean that all objects
whose type is a Flyer have thee abilities of abilities of a flyer.
class Flyer():

def fly(self):

...

class Flock:

def __init__(self):

self.aFlock = []

for i in range(0,12,1):

aFlyer = Flyer() #Each element can ‘fly’

self.aFlock.append(aFlyer)

def takeFirstFlight(self):

for i in range(0,12,1):

self.aFlock[i].fly() #Flyer types ‘flying’

James Tam

An Addition Object-Oriented Concept: Inheritance

• Capabilities are defined in a class (in this case it’s the Flyer()
which is a parent class) and all classes that inherit all the
abilities of a flyer (in this cases the child class: Airplane).
class Flyer():

def fly(self):

….

• Via inheritance: class definitions be extended by specifying
that ‘child’ classes (derived from the parent) inherit (are able
to access) the attributes and methods of the parent.
class Airplane(Flyer):

In python this allows an

Airplane object to ‘fly’ by

inheriting the abilities of

the ‘Flyer.

Alternative example: Java
public class Airplane extends
Flyer
{

}

6/10/2025

Decomposition/functions 21

James Tam

Inheritance: A Complete Example

• Name of the folder complete online example:
4th_inheritance_example

#Airplane.py
#'Flyer' not defined here
from Flyer import Flyer

class Airplane(Flyer):
def refuel(self):

print("Fueling up!")

#Flyer.py
class Flyer():

def fly(self):
print("flying")

#Person.py
class Person():

def doPersonStuff(self):
print

("Doing people things")

#Driver.py
from Flyer import Flyer
from Person import Person
from Airplane import Airplane
def start():

aFlyer = Flyer()
aFlyer.fly()
aPlane = Airplane()
aPlane.refuel()
aPlane.fly()
aPerson = Person()
aPerson.doPersonStuff()
#aPerson.fly() #Error

James Tam

Object-Oriented Design: Advantage Over Procedural
Decomposition

• Procedural approach: functions can allow for nonsensical
behaviors e.g. “flying pigs”

• E.g.

def fly():

...

pigs = list["pig1","pig2"]
fly(pigs)

6/10/2025

Decomposition/functions 22

James Tam

After This Section You Should Now Know

• How to define an arbitrary composite type using a class
– Attributes and methods are bundled with (‘encapsulated’ into the class

definition)

• What are the benefits of defining a composite type by using a
class definition over using a list

• How to create instances of a class (instantiate)

• How to access and change the attributes (fields) of a class

• How to define methods/call methods of a class

• What is the ‘self’ parameter and why is it needed

• What is a constructor (__init__ in Python), when it is used
and why is it used

• How to divide your program into different modules

• How inheritance can allow access to group of derived classes.

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

