
5/22/2025

Decomposition/functions 1

Functions: Decomposition And
Code Reuse, Part 3

• Global identifiers, scope and program design
• Declaring variables: where in your function/at what level in

your program
• Boolean functions
• Breaking long functions into parts
• Common errors when defining functions
• Program design and defining functions
• Testing functions
• Benefits & drawbacks of defining functions

James Tam

In Class Exercise, Functions

• Write a function called ‘emphasize’ that takes a string as a
parameter.

• This function returns a modified version of the string:
– !!! will be added onto the end (three exclamation marks are added to

the end of the existing string).

– Recall: The concatenation operator is the ‘plus’ operator ‘+’ and it can
connect two strings.

5/22/2025

Decomposition/functions 2

James Tam

Declaring Variables: Stylistic Note

• Creating variables all at once at the
start of a function.
def start():

#Variables declared

principle = -1

rate = -1

time = -1

interest = -1

amount = -1

introduction()

principle,rate,time = getInputs()

interest, amount =

calculate(principle,rate,time)

display(principle,rate,time,

interest,amount)

start()

Not syntactically
required but a
stylistic approach

Origins: many languages (e.g. C,
C++, Java, Pascal) require variables
to be declared with a specific type
before they can be used:
fun ()
{

//Variables declared
Scanner in = null;
int age = 0;

in = new Scanner(System.in);
age = in.nextInt()
System.out.print("Age:");

}

James Tam

Global Scope (Again)

• Identifiers (constants or variables) that are declared within the
body of a function have a local scope (the function).
def fun():

num = 12

End of function fun

• Identifiers (constants or variables) that are created outside the
body of a function have a global scope (the program).
num = 12

def fun1():

Instructions

def fun2():

Instructions

End of program

Scope of num is the function

Scope of num is the entire program

5/22/2025

Decomposition/functions 3

James Tam

Global Scope: An Example

• Name of the example program: 8simple_global_example.py
– Learning objective: how global variables are accessible throughout a program.

num1 = 10

def fun():

print(num1)

def start():

fun()

print(num2)

num2 = 20

start()

James Tam

Scoping Rules: Globals

• When an identifier is referenced (variable or constant) then:
1. First look in the local scope for the creation of the identifier: if found

here then stop looking and use this identifier

2. If nothing exists at the local level then look globally

def aFunction():

print(num)

Reference to
an identifier

2. Check globally

num = <value> here?
1. Check locally

num = <value> here?

5/22/2025

Decomposition/functions 4

James Tam

Global Variables: Python Specific Characteristic

• Name of the example program: 9detailedGlobalsVsLocals.py

• Learning objective: Relationship between accessing global
variables and creating locals.

num = 1

def fun():

num = 2

print(num)

def start():

print(num)

fun()

print(num)

start()

Global

Global

Local created and displayed

James Tam

Python Globals: ‘Read’ But Not ‘Write’ Access

• By default global variables can be accessed globally (read
access).

• Attempting to change the value of global variable will only
create a new local variable by the same name (no write access
to the global, a local is created).
num = 1

def fun():

num = 2

print(num)

• Prefacing the name of a variable with the keyword ‘global’ in
a function will indicate changes in the function will refer to the
global variable rather than creating a local one.

global <variable name>

Global num

Local num

5/22/2025

Decomposition/functions 5

James Tam

Globals: Another Example (‘Write’ Access Via The
“Global” Keyword)

• Name of the example program: 10modifyingGlobals.py
• Learning objective: How global variables can be modified inside functions.

num = 1

def fun():

global num

num = 2

print(num)

def start():

print(num)

fun()

print(num)

start()

Global

References to the name ‘num’ now affect
the global variable, local variable not
created inside function ‘fun’

Global still changed after ‘fun()’ is done

Global changed

James Tam

Global Variables: General Characteristics

• You can access the contents of global variables anywhere in the program.

– Python: this can occur even if the ‘global’ keyword is not used.

• Benefits (why avoid global variables.)

– Reason 1st: more efficient use of memory (covered in the last section)

– Reason #2 why the use of global variables is regarded as bad style1: In most
programming languages you can also modify global variables anywhere as well.

• This is why the usage of global variables is regarded as bad programming style, they can
be accidentally modified anywhere in the program.
– Changes in one part of the program can introduce unexpected side effects in another part of the program.

– Reason #3: pedagogical (creating variables locally forces you to apply important
programming concepts such as parameter passing, function return values and
scope).

• Unless you have a compelling reason you should NOT be using global variables but
instead you should pass variables as parameters/returning values.
– Unless you are told otherwise using global variables can affect the style component of your assignment grade.

– Global constants are acceptable and are commonly used.

1 Reminder of reason #1: it’s an inefficient use of memory as variables should be allocated only as needed.

5/22/2025

Decomposition/functions 6

James Tam

What Level To Declare Variables

• Declare your variables as local to a function.

• When there are multiple levels of functions (a level is formed
when one function calls another) then:
– A variable should be created at the lowest level possible

fun1

fun2 Fun3(x,y)

Need
x,y here

x,y
Get and
return x,y

fun3

fun1

fun2

Needed here
y, z

Needed here
x

James Tam

Recap #1 For The Upcoming Example: Format
Specifiers

• Format:
print ("%<placeholder for type of info to display/code>"
%<source of the info to display>)

• Types of information (that can be formatted via the format
specifier):

Specifier Information type Example

%s String print("%s" %(aStr))

1 Example value: aStr = "axy"

print ("%s" %("ab"))

%d Integer print("%d" %(aNum))

1 Example value: aNum = 13

print("%d" %(7))

%f Floating point print("%f" %(12.55))

5/22/2025

Decomposition/functions 7

James Tam

Recap #2 For The Upcoming Example: Storing String
Information

• Typically characters are encoded using ASCII
– https://www.ascii-code.com/

• Each character is mapped to a numeric value
– E.g., ‘A’ = 65, ‘B’ = 66, ‘a’ = 97, ‘2’ = 50

• Values are sequential
– e.g. ‘0’=48, ‘1’=49, ‘2’=50… ‘9’=57,

James Tam

New Term: Boolean Function

• Return a Boolean value (true/false): “Asks a question”

• Typically the Boolean function will ‘ask the question’ about a
parameter(s) and return a True or False value.

• Name of the example program: 11booleanFunctionIsNum.py

• Is it true that a single character string can be passed to the
int() function (i.e. it’s an integer)

def start():

aChar = "0"

print(isDigit(aChar))

Boolean function
def isDigit(aChar):

digit = False
if((aChar >= "0") and \

(aChar <= "9")):
digit = True

return(digit)

Testing the Boolean function (test driver case)
print("Testing '%s': " %(aChar), isDigit(aChar))

5/22/2025

Decomposition/functions 8

James Tam

New Term: Test Driver (Paraphrased From Many
Sources)

• Program code that calls a function under different conditions.

• The conditions are typically simulated through the arguments
passed to the function being tested.

aChar = "9"

print("Testing '%s': " %(aChar), isDigit(aChar))

aChar = "A"

print("Testing '%s': " %(aChar), isDigit(aChar))

• The results are often evaluated through the return value of the
function being tested.

Testing '9': True

Testing 'A': False

James Tam

Example: How To Decompose A Long Function

• To decompose (break into parts) long functions examine the
structure for sections e.g. loops (and their bodies), branches
(and their bodies).

• Each of these sections may be a candidate to be moved into it’s
own separate function body:

Before
def fun1():

while(BE1):
if(BE2):

#If body #1
if(BE3):

#If body #2

After
def fun3():

#If body #2

def fun2():
#If body #1

def fun1():
while(BE1):

if(BE2):
fun2()

if(BE3):
fun3()

5/22/2025

Decomposition/functions 9

The Starting Function Needs To Be Defined
Before It Can Be Called

• Correct 
def fun():

print("Works")

Start

fun()

• Incorrect 
Start

fun()

def fun():

print("Doesn't work")

Function

definition

Function

call

Function

definition

Function

call

James Tam

Another Common Mistake

• Forgetting the brackets during the function call:

def fun():

print("In fun")

Start of program

print("Starting the program")

fun

5/22/2025

Decomposition/functions 10

James Tam

Another Common Mistake

• Forgetting the brackets during the function call:

def fun():

print("In fun")

Start of program

print("Program started")

fun()

Unlike many other languages

the missing set of brackets

do not produce a

syntax/translation error (likely

it will be logic error because

the function isn’t called)

James Tam

Another Common Problem: Indentation

• Recall: In Python indentation indicates that statements are part
of the body of a function.

• (In other programming languages the indentation is not a
mandatory part of the language but indenting is considered
good style because it makes the program easier to read).

• Forgetting to indent:
def start():

print("start")

start()

5/22/2025

Decomposition/functions 11

James Tam

Another Common Problem: Indentation (2)

• Inconsistent indentation:
def start():

print("first")

Error: Unless this is the body of branch or loop

print("second")

start()

James Tam

Creating A Large Document

• Recall: When creating a large document you should
plan out the parts before doing any actual writing.

Chapter 1
• Introduction
• Section 1.1
• Section 1.2
• Section 1.3
• Conclusion

Chapter 2
• Introduction
• Section 2.1
• Section 2.2
• Section 2.3
• Section 2.4
• Conclusion

Chapter 3
• Introduction
• Section 3.1
• Section 3.2
• Conclusion

Step 1: Outline all the parts (no writing)

Section 1.1
It all started seven
and two score
years ago…

Step 2: After all parts outlined, now
commence writing one part at a time

5/22/2025

Decomposition/functions 12

James Tam

Creating A Large Program

• When writing a large program you should plan out the parts
before doing any actual writing.

Step 1: Calculate interest (write empty ‘skeleton’ functions)
def getInformation(): def doCalculations(): def displayResults():

Step 2: All functions outlined, write function bodies one-at-
a-time (test before writing next function)

def getInformation():
principle = int(input())
interest = int(input())
time = int(input())
return(principle,interest,time) # Simple test: check inputs

are properly read as input
and returned to caller
p,r,t = getInformation()
print(p,r,t)

James Tam

Yet Another Problem: Creating ‘Empty’ Functions

def start():

start()

Problem: This statement

appears to be a part of the

body of the function but it is

not indented???!!!

5/22/2025

Decomposition/functions 13

James Tam

Solution When Outlining Your Program By Starting With ‘Empty’
Functions

def fun():

print()

Program’sstart

fun()

A function must have

at least one

instruction in the

body

Alternative (writing an
empty function: ‘pass’ a
python instruction that
literally does nothing)

def fun():

pass

Program’s start

fun()

James Tam

Testing Functions

• The correctness of a function should be verified. (“Does it do
what it is supposed to do?”)

• Typically this is done by calling the function, passing in
predetermined parameters and checking the result i.e. via a
test driver

• Example1: 12absoluteTest.py
def absolute(number):

if (number < 0):

result = number * -1

else:

result = number

return(result)

Test cases/drivers

print(absolute(-13))

print(absolute(7))

Expected results:
13
7

1: In case you are wondering about the naming use. It’s not testing for an
absolute value but instead you’re testing a program that implements an
absolute value feature.

5/22/2025

Decomposition/functions 14

James Tam

How To Write Your Programs

• Reminder:
– Outline the whole program with empty functions (stubs) that don’t

perform any tasks yet.

– Implement the code for each function one at a time.

– Test each function with a driver.

– Fix any bugs, test again until you are reasonable sure the function is
correct.

– Only then should you move onto writing the next function.

• One approach:
– Write/test each function in a file separate from the main program.

– Only after you are sure of that function’s correctness do you add its
code into the file containing the main program.

Why Employ Problem Decomposition And Modular
Design (1)

• Drawback
–Complexity – understanding and setting up inter-function

communication may appear daunting at first.

–Tracing the program may appear harder as execution appears to “jump”
around between functions.

–These are ‘one time’ costs: once you learn the basic principles of
functions with one language then most languages will be similar.

5/22/2025

Decomposition/functions 15

James Tam

Why Employ Problem Decomposition And Modular
Design (2)

• Benefit
– Solution is easier to visualize and create (decompose the problem so

only one part of a time must be dealt with).

–Easier to test the program:
• Test one feature/function at a time

• (Testing multiple features increases complexity)

–Easier to maintain (if functions are independent changes in one
function can have a minimal impact on other functions, if the code for a
function is used multiple times then updates only have to be made
once).

– Less redundancy, smaller program size (especially if the function is used
many times throughout the program).

– Smaller programs size: if the function is called many times rather than
repeating the same code, the function need only be defined once and
then can be called many times.

James Tam

Extra Topics

• These are language specific implementations and will be
covered (and tested) only there is time (i.e. we are ahead of
schedule in the lectures).

5/22/2025

Decomposition/functions 16

James Tam

Default Arguments

• If some parameters are excluded in the function call then
default values (“default arguments”) can be specified.

• It can be employed when some parameters are not always
known when the function is called.
– Example: creating a new ‘client’ or ‘patient’ but the information is not

all available when the person signs up.

• New term, default argument: if an argument is omitted then
the default value is used for the missing value.

P1=123456 P2=1
8

P2=1
8

P1=111111

P2=18 (default)

P3=
(default)

James Tam

Default Arguments: An Example

• Name of the example program: 13_default_parameters
– Learning objective: how define and call a function with default arguments.

def display(studentID,anAge=-1,aName="No name"):

print(aName,studentID,anAge)

def start():

display(123456,18,"Smiley")

display(111111)

5/22/2025

Decomposition/functions 17

James Tam

Syntax requirements For Default Arguments

• Default arguments cannot be followed by non-default
arguments.

• Alternative wording: all optional arguments must be at end of
the parameter list.
– Example below: 1st argument (default) is followed by a non-default

argument

James Tam

Recall: In General Parameter Order Is Critical

5/22/2025

Decomposition/functions 18

James Tam

New Term: Key Word Arguments

• The except is when the parameters being passed into a
function are assigned values during the call.
– In this case it’s the name of the parameters that determine which

parameters match up on the function call vs. the function definition.

– In this case the names must match.

– But order is not relevant.

• Format (during function call):
<function name>(<arg1>=<value>, <arg2>=<value>, <arg3>=<value>…)

• Example of using keyword arguments
– Function call (default values mandatory):

fun1(aNum=888,aStr="Lucky")

• Example
– Function definition:

def fun1(aStr,aNum):

print(aNum,aStr)

James Tam

Example Of Keyword Arguments

• Name of the example program: 14_keyword_arguments

– Learning objective: how to use keyword arguments (using the

name of the arguments to specify how arguments are matched up

in the function call vs. the function definition).

def fun1(aStr,aNum):

print(aNum,aStr)

def fun2(localNum,localString):

print(localNum,localString)

def start():

print("fun1(), using keyword arguments: ", end="")

fun1(aNum=888,aStr="Lucky")

aNum=777

print("fun2(), using normal positional arguments: ", end="")

fun2(aNum,"Also lucky")

5/22/2025

Decomposition/functions 19

James Tam

If The Names Don’t Match: Won’t Work

#def fun3(aNum1,aStr1):

print(aNum1,aStr1)

#print("fun3(), using keyword arguments but names don't

#match: ")

#fun3(aNum=888,aStr="lucky")

Treated as keyword not
positional arguments
because default values are
provided

James Tam

After This Section You Should Now Know

• What is global scope
• Consequences of employing global scope
• What are scoping rules when referring to an identifier
• Where variables should be declared in the body of a function
• A guideline for the level at which variables should be declared
• How/when to employ doc string documentation
• What is a Boolean function
• A technique for decomposing a long function into smaller

functions
• Common errors when defining functions
• The basics of testing a function
• The benefits & drawbacks of defining functions
• New terms & concepts: Boolean function, test driver, default

arguments, keyword parameters.

5/22/2025

Decomposition/functions 20

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

