
5/16/2025

Decomposition/functions 1

Functions: Decomposition
And Code Reuse, Part 1

• Defining new functions
• Calling functions you have defined
• Declaring variables that are local to a

function

James Tam

Tip For Success: Reminder

• Look through the examples and notes before class.

• This is especially important for this section because the
execution of these programs will not be sequential order.

• Instead execution will appear to ‘jump around’ so it will be
harder to follow the examples if you don’t do a little
preparatory work.

• Also it would be helpful to take notes that include greater
detail:
– For example: Literally just sketching out the diagrams that I draw

without the extra accompanying verbal description that I provide in
class probably won’t be useful to study from later.

5/16/2025

Decomposition/functions 2

James Tam

Writing Your Own Functions: Why Do It?

• First reason, you have no choice: the code hasn’t been
implemented for this feature yet.

• Example: you can’t just look up the prebuilt functions in
python and have one of them do all the work for one of your
assignments.

James Tam

Writing Your Own Functions: Why Do It?

• Second reason, you need to know this: it’s not only done all
the time in real life but it’s a key component of this course.

• (Exert from the university calendar description):
– “Introduction to problem solving, analysis and design of small-scale computational

systems and implementation using a procedural programming language. ”

• Expectation students who have successfully finished this course will be

able to properly implement a non-trivial program not only using functional

decomposition but also apply important related concepts such as:

parameters, return values and scope.

• This is why later assignments are strict in marking – you must implement your
solution using proper procedural programming techniques (taught in class).

• New terminology:
– Function, procedure, method

– For now you can think of them as largely interchangeable although you
will learn the difference between a function and method towards the
end of this course.

• Most languages don’t distinguish procedures from functions.

5/16/2025

Decomposition/functions 3

James Tam

Writing Your Own Functions: Why Do It?

• Third reason, reuse/efficiency: Once the function definition is
complete (and tested reasonably) it can be called (reused)
many times.

def displayInstructions():

print("Displaying instructions")

Main body of code (starting execution point)

displayInstructions()

displayInstructions()

displayInstructions()

• Think about how many times prewritten functions such as
input and print have be used.

James Tam

Writing Your Own Functions: Why Do It?

• Fourth reason, easier maintenance: (related to the previous benefit:
write once, use many times): when program maintenance (changes
to code) is needed.

• If the same code is written over and over again in different parts of
the program then each location must be changed.

• Implementing that same code in one function requires only changes
to the code in that function.

• This may result in a smaller program with fewer/no redudancies as
well.

def myFunction():
#Just modify here

#Version: no functions requires
#many modifications
#Code to modify

#Code to modify

#Code to modify

5/16/2025

Decomposition/functions 4

James Tam

Writing Your Own Functions: Why Do It?

• Fifth reason, decoupling of your code:

• New terminology, decoupling: a fancy term for a simple
concept.

• In this case it means you can simply use a function without
worrying about the ‘internal’ details of how it was written.

• You simply need things such as: how to call it, what operations
the function implements, what are it’s return values etc.

• This is the actual code from the randint() function.
– You just have to know how to call it not know all the intimate details of

how every line works.

James Tam

Writing Your Own Functions: Why Do It?

• More Of The Random Library/Module

1

5/16/2025

Decomposition/functions 5

James Tam

Writing Your Own Functions: Why Do It?

• More Of The Random Library/Module

2

James Tam

Writing Your Own Functions: Why Do It?

• More Of The Random Library/Module

3

5/16/2025

Decomposition/functions 6

James Tam

Writing Your Own Functions: Why Do It?

• Sixth reason: to simplify the problem.

• Sometimes you will have to write a program for a large and/or
complex problem.

• One technique employed in this type of situation is the top
down approach to design.
– The main advantage is that it reduces the complexity of the problem

because you only have to work on it a portion at a time.

James Tam

Solving Larger Problems

• Sometimes you will have to write a program for a large and/or
complex problem.

• One technique employed in this type of situation is the top
down approach to design.
– The main advantage is that it reduces the complexity of the problem

because you only have to work on it a portion at a time.

5/16/2025

Decomposition/functions 7

Top Down Design

1. Start by outlining the major parts (structure)

2. Then implement the solution for each part

My autobiography

Chapter 1:

The humble beginnings
Chapter 2:

My rise to greatness

…

Chapter 7:

The end of an era

Chapter 1: The humble beginnings

It all started ten and one score years ago

with a log-shaped computer work station…

Image copyright unknown

Decomposing Your Program Into Functions According
To Tasks/Features It Needs To Implement

Main tasks to

be fulfilled by

the program

Important

subtask #1

Important

subtask #2

Important

subtask #3

Function #1

…Etc.

Function #2 Function #3 …Etc.

When do you stop decomposing and start writing functions? No clear cut off but use the “Good
style” principles (later in these notes) as a guide e.g., a function should have one well defined
task and not exceed a screen in length.

5/16/2025

Decomposition/functions 8

James Tam

Applying The Top Down Design To Programming

• First: outline the parts of your program before writing the
instructions.
– These ‘parts’ will take the form of functions.

• Second: implement (write) the code for one part/function at a
time.

• Third: run a reasonable number of tests on that function to
ensure it is correct.

• Fourth: apply any bug fixes that may be needed and test again.

• Fifth: only after a reasonable amount of testing has been done
on a function should Steps 2 – 4 be applied on another
function.

How To Decompose A Problem
Into Functions

• Break down the program by what it does (described with
actions/verbs or action phrases).

• Eventually the different parts of the program will be
implemented as functions.

5/16/2025

Decomposition/functions 9

Example Problem

• Design a program that will perform a simple interest
calculation.

• The program should prompt the user for the appropriate
values, perform the calculation and display the values
onscreen.

Example Problem

• Design a program that will perform a simple interest
calculation.

• The program should prompt the user for the appropriate
values, perform the calculation and display the values
onscreen.

• Action/verb list:
– Prompt

– Calculate

– Display

5/16/2025

Decomposition/functions 10

Top Down Approach: Breaking A Programming
Problem Down Into Parts (Functions)

Calculate Interest

Get information Do calculations Display results

Things Needed In Order To Use Functions

•Function call
– Actually running (executing) the function.

– You have already done this second part many times because up to this
point you have been using functions that have already been defined by
someone else e.g., print(), input()

•Function definition
– Instructions that indicate what the function will do when it runs.

– Before this section: you have used built-in python functions (with their
instructions already written by someone else).

– In this section: you will learn how to write the instructions inside a
function body which execute when that function runs.

5/16/2025

Decomposition/functions 11

Functions (Basic Case: No parameters/Inputs)

Function call

Function definition

You’ve already called prebuilt
functions and passed no
arguments e.g. print(),
input()

Defining A Function

• Format:

def <function name>1():

body2

• Example:

def displayInstructions():

print ("Displaying instructions on how to use the

program")

• You don’t need to define prebuilt functions because some else has defined the code for
you.

1 Functions should be named according to the rules for naming variables (all lower case alphabetic, separate multiple words via

camel case or by using an underscore).

2 Body = the instruction or group of instructions that execute when the function executes (when called).

The rule in Python for specifying the body is to use indentation.

5/16/2025

Decomposition/functions 12

Calling A Function

• Format:
<function name>()

• Example:

displayInstructions()

•As you mentioned you have already learned how to call a
prewritten function e.g. print(), int(), input(),
randint(1,6) etc.

James Tam

Quick Recap: Starting Execution Point

• The program starts at the first executable instruction that is
not indented.

• In the case of your programs thus far all statement have been
un-indented (save loops/branches) so it’s just the first
statement that is the starting execution point.

• But note that the body of functions MUST be indented in
Python.

HUMAN_CAT_AGE_RATIO = 7
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO
…

5/16/2025

Decomposition/functions 13

James Tam

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

• Name of the example program: 1firstExampleFunction.py
– Learning objective:

def displayInstructions():

print("Displaying instructions")

Main body of code (starting execution point, not indented)

displayInstructions()

print("End of program")

James Tam

• Name of the example program: 1firstExampleFunction.py

def displayInstructions():

print("Displaying instructions")

Main body of code (starting execution point)

displayInstructions()

print("End of program")

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

(Something new

in this section):

Function

definition

(You’ve done

this before):

Function call

5/16/2025

Decomposition/functions 14

James Tam

Defining The Main Body Of Code As A Function

• Good style: unless it’s mandatory, all instructions must be inside a function.

• Rather than defining instructions outside of a function the main starting
execution point can also be defined explicitly as a function.

• (The previous program rewritten to include an explicit start function)
Example program: 2firstExampleFunctionV2.py

– Learning objective: enclosing the start of the program inside a function

def displayInstructions():

print ("Displaying instructions")

def start():

displayInstructions()

print("End of program")

• Important: If you explicitly define the starting function then do not forgot
to explicitly call it!

start ()

Don’t forget to start your program!

Program starts at the first executable

un-indented instruction

James Tam

Stylistic Note

• By convention the starting function is frequently named
‘main()’ or in my case ‘start()’.
def main():

• OR
def start():

• This is done so the reader can quickly find the beginning
execution point.

5/16/2025

Decomposition/functions 15

James Tam

New Terminology

• Local variables: are created within the body of a function
(indented)

• Global constants: created outside the body of a function.

• (The significance of global vs. local is coming up shortly).

HUMAN_CAT_AGE_RATIO = 7

def getInformation():
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO

Global
constant

Local
variables

James Tam

Creating Your Variables

• Before this section of notes: all statements (including the
creation of a variables) occur outside of a function

• Now that you have learned how to define functions, ALL your
variables must be created with the body of a function.

• Constants can still be created outside of a function (more on
this later).

HUMAN_CAT_AGE_RATIO = 7
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO
…

HUMAN_CAT_AGE_RATIO = 7

def getInformation():
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO

‘Outside’: OK for
constants only

Inside function
body: all variables
(e.g. ‘age’,
‘catAge’) must be
here

5/16/2025

Decomposition/functions 16

James Tam

Local Variables

• Characteristics
– Locals only get allocated (created in memory) when the function is

called.

– Locals get de-allocated (unavailable in memory) when the function
ends.

• Benefits (why create them this way)
– 1st: more efficient use of memory

– 2nd: minimize the occurrence of side effects of global variables

• This is the main reason why it’s regarded as bad style in actual practice.

• But details are more complex so the explanation will come later.

– 3rd: pedagogical (creating variables locally forces you to apply important
programming concepts such as parameter passing, function return
values and scope).

James Tam

Scope: Visually Showing When Memory Locations Can Be
Accessed

• The scope of an
identifier (variable,
constant) is where it
may be accessed and
used.

• In Python1:

– An identifier comes
into scope (becomes
visible to the
program and can be
used) after it has
been declared.

– An identifier goes out
of scope (no longer
visible so it can no
longer be used) at
the end of the
indented block
where the identifier
has been declared.

1 The concept of scoping (limited visibility) applies to all programming languages. The rules for

determining when identifiers come into and go out of scope will vary with a particular language.

RATIO = 7
def getInformation():

age = input("Age: ")

catAge = age * RATIO

getInformation()

Scope of age
(allocated)

Scope of catAge
(allocated)

End of program (RATIO goes out of
scope/deallocated):

Age, catAge is not

in scope outside

the function

Age, catAge is

not in scope

outside the

function

Scope of RATIO

(allocated)

End of function (age, catAge go out
of scope/deallocatecd):

5/16/2025

Decomposition/functions 17

James Tam

Working With Local Variables: Putting It All Together

• Name of the example program: 3secondExampleFunction.py
– Learning objective: creating/defining variables that only exist while a function runs

(local to that function).

def fun():

num1 = 1

num2 = 2

print(num1, " ", num2)

start function

fun()

Variables that

are local to

function ‘fun’
Scope of num1

Scope of num2

James Tam

Variables Vs. Named Constants

• As you have already been taught:
– Variables can change as the programs run while named constants don’t

change after they’ve been set to the initial value.

– To visually distinguish the two variables use lower case while constants
are capitalized.

• Your program should consistently distinguish the two!
– The following is only a ‘constant’ in name only and is treated like a

variable.

PI = 3.14

radius = 10

area = PI * (radius ** 2)

PI = 3.1 #Do not change the value in a constant!

5/16/2025

Decomposition/functions 18

James Tam

After This Section You Should Now Know

• How and why the top down approach can be used to
decompose problems

– What is procedural programming

• How to write the definition for a function

• How to write a function call

• How and why to declare variables locally

• How to pass information to functions via parameters

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

