Functions: Decomposition
And Code Reuse, Part 1

* Defining new functions

* Calling functions you have defined

* Declaring variables that are local to a
function

Tip For Success: Reminder

* Look through the examples and notes before class.

* This is especially important for this section because the
execution of these programs will not be sequential order.

* Instead execution will appear to ‘jump around’ so it will be
harder to follow the examples if you don’t do a little
preparatory work.

* Also it would be helpful to take notes that include greater
detail:

— For example: Literally just sketching out the diagrams that | draw
without the extra accompanying verbal description that | provide in
class probably won’t be useful to study from later.

James Tam

Decomposition/functions

5/16/2025

Writing Your Own Functions: Why Do It?

* First reason, you have no choice: the code hasn’t been
implemented for this feature yet.

* Example: you can’t just look up the prebuilt functions in
python and have one of them do all the work for one of your
assignments.

James Tam

Writing Your Own Functions: Why Do It?

* Second reason, you need to know this: it’s not only done all
the time in real life but it’s a key component of this course.

* (Exert from the university calendar description):

— “Introduction to problem solving, analysis and design of small-scale computational

systems and implementation using a procedural programming language. ”

* Expectation students who have successfully finished this course will be

able to properly implement a non-trivial program not only using functional

decomposition but also apply important related concepts such as:
parameters, return values and scope.

* This is why later assignments are strict in marking — you must implement your

solution using proper procedural programming techniques (taught in class).

* New terminology:

Function, procedure, method

will learn the difference between a function and method towards the
end of this course.
* Most languages don’t distinguish procedures from functions.

— For now you can think of them as largely interchangeable although you

James Tam

Decomposition/functions

5/16/2025

5/16/2025

Writing Your Own Functions: Why Do It?

* Third reason, reuse/efficiency: Once the function definition is
complete (and tested reasonably) it can be called (reused)
many times.

def displayInstructions():
print("Displaying instructions™")

m——— RES
Displaying instructions
Displaying instructions
Displaying instructions

i0n po.inv)

Main body of code (starti
displayInstructions()
displayInstructions(
displayInstructions()

* Think about how many times prewritten functions such as
input and print have be used.

James Tam

Writing Your Own Functions: Why Do It?

* Fourth reason, easier maintenance: (related to the previous benefit:
write once, use many times): when program maintenance (changes
to code) is needed.

¢ If the same code is written over and over again in different parts of
the program then each location must be changed.

* Implementing that same code in one function requires only changes
to the code in that function.

def myFunction(): #Version: no functions requires
#Just modify here #many modifications

#Code to modify

#Code to modify

#Code to modify

* This may result in a smaller program with fewer/no redudancies as
well.

James Tam

Decomposition/functions 3

5/16/2025

Writing Your Own Functions: Why Do It?

* Fifth reason, decoupling of your code:

* New terminology, decoupling: a fancy term for a simple
concept.

* In this case it means you can simply use a function without
worrying about the ‘internal’ details of how it was written.

* You simply need things such as: how to call it, what operations
the function implements, what are it’s return values etc.

* This is the actual code from the randint () function.

— You just have to know how to call it not know all the intimate details of
how every line works.

" random - Notepad — [u] X
File Edit Format View Help
def randint(self, a, b): "

“"""Return random integer in range [a, b], including both end points.

return self.randrange(a, b+l)

Ln1 Coll 100% Windows (CRLF) UTF-8 James Tam
.
Writing Your Own Functions: Why Do It?
* More Of The Random Library/Module
7 random - Motepad - [m] b4
File Edit Format View Help
def randrange(self, start, stop=None, step=_ONE): |~
"""Choose a random item from range(start, stop[, step]).
This fixes the problem with randint() which includes the
endpoint; in Python this is usually not what you want.
This code is a bit messy to make it fast for the
common case while still doing adequate error checking.
try:
istart = _index(start)
except TypeError:
istart = int(start)
if istart l= start:
_warn('randrange() will raise TypeError in the future®,
Deprecationbarning, 2)
raise ValueError(“non-integer arg 1 for randrange()")
_warn(‘non-integer arguments to randrange() have been deprecated *
‘since Python 3.1@ and will be removed in a subsequent °
‘version®,
DeprecationWarning, 2)
if stop is None:
MWe don't check for "step != 1" because it hasn't been
type checked and converted to an integer yet.
if step is not _ONE:
raise TypeError('Missing a non-MNone stop argument’)
if istart > @:
return self._randbelow(istart)
raise ValueError(“empty range for randrange()") .
< >
Ln1, Col1 100% Wind, CRLI UTF-8
D=2 fociows CREE) James Tam

Decomposition/functions 4

Writing Your Own Functions: Why Do It?

* More Of The Random Library/Module

" random - Notepad

File Edit Format View Help
stop argument supplied.
try:
istop = _index(stop)
except TypeError:
istop = int(stop)
if istop != stop:
_warn('randrange() will raise TypeError in the future®,
DeprecationWarning, 2)
raise ValueError("non-integer stop for randrange()")
_warn('non-integer arguments to randrange() have been deprecated '
"since Python 3.108 and will be removed in a subsequent '
"version’,
DeprecationWarning, 2)
width = istop - istart
try:
istep = _index(step)
except TypeError:
istep = int(step)
if istep != step:
_warn('randrange() will raise TypeError in the future®,
DeprecationWarning, 2)
raise ValueError("non-integer step for randrange()")
_warn('non-integer arguments to randrange() have been deprecated '
"since Python 3.108 and will be removed in a subsequent '
"version’,
DeprecationWarning, 2)

Ln1, Col1 100% Windows (CRLF)

UTF-8

James Tam

Writing Your Own Functions: Why Do It?

* More Of The Random Library/Module

j random - Notepad

File Edit Format View Help
‘version®,
DeprecationWarning, 2)
Fast path.
if istep == 1:
if width > @:
return istart + self._randbelow(width)

Non-unit step argument supplied.
if istep » @:

n = (width + istep - 1) // istep
elif istep < @:

n = (width + istep + 1) // istep
else:

raise ValueError(“zero step for randrange()")
if n <= @:

raise ValueError(“empty range for randrange()™)
return istart + istep * self._randbelow(n)

Ln 329, Col 23 100% Windows (CRLF)

raise ValueError(“"empty range for randrange() (%d, %d, %d)" % (istart, istop,

UTF-8

James Tam

Decomposition/functions

5/16/2025

5/16/2025

Writing Your Own Functions: Why Do It?

* Sixth reason: to simplify the problem.
* Sometimes you will have to write a program for a large and/or
complex problem.

* One technique employed in this type of situation is the top
down approach to design.

— The main advantage is that it reduces the complexity of the problem
because you only have to work on it a portion at a time.

James Tam

Solving Larger Problems

* Sometimes you will have to write a program for a large and/or
complex problem.

* One technique employed in this type of situation is the top
down approach to design.

— The main advantage is that it reduces the complexity of the problem
because you only have to work on it a portion at a time.

James Tam

Decomposition/functions 6

5/16/2025

Top Down Design

1. Start by outlining the major parts (structure)

| My autobiography |

J el ‘

Lo . §
Y L L
ol
Chapter 1: i\, @
The humble beginnings

Chapter 2: Chapter 7:
My rise to greatness The end of an era

2. Then implement the solution for each part
Chapter 1: The humble beginnings

It all started ten and one score years ago
with a log-shaped computer work station...

@

1

Image copyrlglnt unknown

Decomposing Your Program Into Functions According
To Tasks/Features It Needs To Implement

Main tasks to
be fulfilled by
the program

Importa;n Important Important Et
subtask #1 subtask #2 subtask #3 -+ ElC.

NS Z5

Function #1 Function #2 Function #3 ...Etc.

When do you stop decomposing and start writing functions? No clear cut off but use the “Good

style” principles (later in these notes) as a guide e.g., a function should have one well defined
task and not exceed a screen in length.

Decomposition/functions

5/16/2025

Applying The Top Down Design To Programming

* First: outline the parts of your program before writing the
instructions.
— These ‘parts’ will take the form of functions.

* Second: implement (write) the code for one part/function at a
time.

* Third: run a reasonable number of tests on that function to
ensure it is correct.

* Fourth: apply any bug fixes that may be needed and test again.

* Fifth: only after a reasonable amount of testing has been done
on a function should Steps 2 — 4 be applied on another
function.

James Tam

Main tasks fo
be fulfiled by
the program

How To Decompose A Problem
Into Functions

* Break down the program by what it does (described with
actions/verbs or action phrases).

* Eventually the different parts of the program will be
implemented as functions.

Decomposition/functions 8

5/16/2025

Example Problem

* Design a program that will perform a simple interest
calculation.

* The program should prompt the user for the appropriate
values, perform the calculation and display the values
onscreen.

Example Problem

* Design a program that will perform a simple interest
calculation.

* The program should prompt the user for the appropriate
values, perform the calculation and display the values
onscreen.

* Action/verb list:

— Prompt
— Calculate
— Display

Decomposition/functions

5/16/2025

Top Down Approach: Breaking A Programming
Problem Down Into Parts (Functions)

Calculate Interest

Get information Do calculations Display results

Things Needed In Order To Use Functions

*Function call

— Actually running (executing) the function.

— You have already done this second part many times because up to this
point you have been using functions that have already been defined by
someone else e.g., print(), input()

*Function definition
— Instructions that indicate what the function will do when it runs.

— Before this section: you have used built-in python functions (with their
instructions already written by someone else).

— In this section: you will learn how to write the instructions inside a
function body which execute when that function runs.

Decomposition/functions 10

5/16/2025

Functions (Basic Case: No parameters/Inputs)

You've already called prebuilt
functions and passed no

arguments e.g. print(),
input()

Function definition

Defining A Function

* Format:
def <function name>1():
body?
* Example:
def displayInstructions():

print ("Displaying instructions on how to use the
program")

* You don't need to define prebuilt functions because some else has defined the code for
you.

def randint(self, a, b):
“"*Return random integer in range [a, b], including both end points.

return self.randrange(a, b+l)

1 Functions should be named according to the rules for naming variables (all lower case alphabetic, separate multiple words via
camel case or by using an underscore).

2 Body = the instruction or group of instructions that execute when the function executes (when called).

The rule in Python for specifying the body is to use indentation.

Decomposition/functions 11

5/16/2025

Calling A Function

* Format:
<function name> ()

* Example:
displayInstructions()

¢ As you mentioned you have already learned how to call a

prewritten function e.g. print(), int(), input(),
randint(1,6) etc.

Quick Recap: Starting Execution Point

* The program starts at the first executable instruction that is
not indented.

* In the case of your programs thus far all statement have been
un-indented (save loops/branches) so it’s just the first
statement that is the starting execution point.

* But note that the body of functions MUST be indented in
Python.

James Tam

Decomposition/functions 12

5/16/2025

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

* Name of the example program: 1firstExampleFunction.py
— Learning objective:

def displayInstructions() =

——print("Displaying instructions")
Displaying instructions

Main body of code (starting execution point, not indented)
displayInstructions()
—print("End of program")

End of program

James Tam

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

* Name of the example program: 1firstExampleFunction.py

def displayInstructions():
print("Displaying instructions™) \

Main body of code (starting execution point) definition

(Something new
in this section):
Function

|displayInstructions()

print("End of program")

(You’ve done
this before):
Function call

James Tam

Decomposition/functions 13

5/16/2025

Defining The Main Body Of Code As A Function

* Good style: unless it’s mandatory, all instructions must be inside a function.
* Rather than defining instructions outside of a function the main starting
execution point can also be defined explicitly as a function.
* (The previous program rewritten to include an explicit start function)
Example program: 2firstExampleFunctionV2.py
— Learning objective: enclosing the start of the program inside a function

def displayInstructions():
print ("Displaying instructions™)

def start():
displayInstructions()
print("End of program")
* Important: If you explicitly define the starting function then do not forgot

to explicitly call it!
P y Don’t forget to start your program!

Program starts at the first executable
start () un-indented instruction James Tam

Stylistic Note

* By convention the starting function is frequently named
‘main()’ or in my case ‘start()’.
def main():

* OR
def start():

* This is done so the reader can quickly find the beginning
execution point.

James Tam

Decomposition/functions 14

New Terminology

* Local variables: are created within the body of a function
(indented)

* Global constants: created outside the body of a function.
* (The significance of global vs. local is coming up shortly).

Global
constant
HUMAN_CAT_AGE_RATIO = 7

def getInformation():

age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO Local
variables

James Tam

Creating Your Variables

* Before this section of notes: all statements (including the
creation of a variables) occur outside of a function

HUMAN_CAT_AGE_RATIO = 7
age = input("What is your age in years: ")

catAge = age * HUMAN_CAT_AGE_RATIO

* Now that you have learned how to define functions, ALL your
variables must be created with the body of a function.

* Constants can still be created outside of a function (more on
this later). Outside’: OK for

constants onl
HUMAN_CAT_AGE_RATIO = 7

Inside function

def getInformation(): body: all variables

age = input("What is your age in years: ") a—— (e.g. ‘age’,
catAge = age * HUMAN_CAT_AGE_RATIO ‘catAge’) must be
here

James Tam

Decomposition/functions

5/16/2025

15

5/16/2025

Local Variables

* Characteristics
— Locals only get allocated (created in memory) when the function is
called.
— Locals get de-allocated (unavailable in memory) when the function
ends.
* Benefits (why create them this way)
— 15t more efficient use of memory
— 2": minimize the occurrence of side effects of global variables
* This is the main reason why it’s regarded as bad style in actual practice.
* But details are more complex so the explanation will come later.

— 31 pedagogical (creating variables locally forces you to apply important
programming concepts such as parameter passing, function return
values and scope).

James Tam

Scope: Visually Showing When Memory Locations Can Be

Accessed
YT Age, catAge is not
Scope of RATIO = . in scope outside
* The scope of an P def getInformation(): the function
. e : . age = input(“"Age: ") = Scope of age
identifier (.varlable,. (a1focated) (allocated)
constant) is where it
may be accessed and catAge - age * RATIO Scope of catage
used. (allocated)
1 getInformation() Age, catAge is
* In Pythont: not in scope
— An identifier comes outside the
. b function
Ir‘]tf) scope(ecomes End of function (age, catAge go out
visible to the of scope/deallocatecd):
program and can be
used) after it has
been declared. End of program (RATIO goes out of
— An identifier goes out L scope/deallocated):
of scope (no longer
visible so it can no
longer be used) at
the end of the
indented block
where the identifier
has been declared.
1 The concept of scoping (limited visibility) applies to all programming languages. The rules for James Tam

determining when identifiers come into and go out of scope will vary with a particular language.

Decomposition/functions 16

5/16/2025

Working With Local Variables: Putting It All Together

* Name of the example program: 3secondExampleFunction.py

— Learning objective: creating/defining variables that only exist while a function runs
(local to that function).

Variables that

def fun(): are local to
— function ‘fun’
numl = 1 / — Scope of numl

num2 = 2

— Scope of num2

print(numl, " ", num2)
start function
-Fun() oF: cmposition 62]> python ondExampleFunction.py

James Tam

Variables Vs. Named Constants

* As you have already been taught:

— Variables can change as the programs run while named constants don’t
change after they’ve been set to the initial value.

— To visually distinguish the two variables use lower case while constants
are capitalized.
* Your program should consistently distinguish the two!

— The following is only a ‘constant’ in name only and is treated like a
variable.

PI = 3.14

radius = 10

area = PI * (radius ** 2)

PI = 3.1 #Do not change the value in a constant!

James Tam

Decomposition/functions 17

5/16/2025

After This Section You Should Now Know

* How and why the top down approach can be used to
decompose problems
— What is procedural programming

* How to write the definition for a function

* How to write a function call

* How and why to declare variables locally

* How to pass information to functions via parameters

James Tam

Copyright Notification

* “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

James Tam

Decomposition/functions 18

