
6/2/2025

Composites 1

Composite Types, Lists Part 2

• Multi-dimensional lists: when to use them, basic 2D list
operations (creation, access, modification, display,
copy).

• Using named constants to stay within list bounds.

• Dynamically creating 2D lists with the append function.

When To Use Lists Of Different Dimensions
• It’s determined by the data – the number of categories of information

determines the number of dimensions to use.

• Examples:

• (1D list)
–Tracking grades for a class (previous example)

–Each cell contains the grade for a student i.e., grades[i]

–There is one dimension that specifies which student’s grades are being
accessed

• (2D list)
–Expanded grades program (table: grades for multiple lectures)

–Again there is one dimension that specifies which student’s grades are being
accessed

–The other dimension can be used to specify the lecture section

One dimension (which student)

6/2/2025

Composites 2

When To Use Lists Of Different Dimensions (2)

• (2D list continued)

Student

Lecture

section First

student

Second

student

Third

student
…

L01

L02

L03

L04

L05

:

L0N

When To Use Lists Of Different Dimensions (3)

• (2D list continued)

• Notice that each row is merely a 1D list

• (A 2D list is a list containing rows of 1D lists)

L02

L07

L01

L03

L04

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

Columns (e.g. grades)

Rows

(e.g.

lecture

section)

L06

L05

2D list access:

• List elements are

specified in the order of
[row] [column]

• Specifying only a single

set of brackets

specifies the row

6/2/2025

Composites 3

Creating And Initializing A Multi-Dimensional
List In Python (Fixed Size During Creation)

General structure
<list_name> = [[<value 1>, <value 2>, ... <value n>],

[<value 1>, <value 2>, ... <value n>],

: : :

: : :

[<value 1>, <value 2>, ... <value n>]]

Rows

Columns

Name of the example program: 1display2DList.py

Learning: creating, displaying a fixed size 2D list

table = [[0, 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

for r in range (0, 4, 1):

print (table[r]) #Each call to print displays a 1D list

for r in range (0,4,1):

for c in range (0,3,1):

print(table[r][c], end="")

print()

print(table[2][0]) #Displays 2 not 0

Creating And Initializing A Multi-Dimensional List In
Python (2): Fixed Size During Creation

r = 0

r = 1

r = 2

r = 3

r = 0

r = 1

r = 2

r = 3

0 1 2 (col)

c=0 c=1 c=2

#Displays a list element

6/2/2025

Composites 4

James Tam

2D Lists: Levels Of Access

table = [[0, 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

print(table) #Entire list

print(table[0]) #First row

print(table[3][1]) #4th row, 2nd column

print(table[0][0][0]) #What does this do?

table = [[["a","b"], 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

print(table[0][0][0]) #Now what does this do?

James Tam

Creating 2D Lists Via The Repetition Operator

Name of the example program: 2creatingListViaRepetition.py

Learning:

– Creating a variable sized 2D list using the repetition operator and the append
method.

– The 2D list is created by creating a 1D list and appending the 1D list to the end
of the 2D list.

MAX_COLUMNS = 5

MAX_ROWS = 3

ELEMENT = "*"

aList = []

r = 0

while (r < MAX_ROWS):

tempList = [ELEMENT] * MAX_COLUMNS

aList.append(tempList)

r = r + 1

6/2/2025

Composites 5

James Tam

How To Avoid Overflowing 2D Lists: Language
Independent Approach

• Employ named constants

• Recall that the previous example declared 2 named constants.
MAX_COLUMNS = 5

MAX_ROWS = 3

• Control access to list elements using these constants.
r = 0

while (r < MAX_ROWS):

c = 0

while (c < MAX_COLUMNS):

print(aList[r][c], end = "")

c = c + 1

print()

r = r + 1

James Tam

How To Avoid Overflowing 2D Lists: Language
Independent Approach (2)

• Python specific approaches:
– Use variables instead of constants: (this works with python but not

other languages such as C, C++, java) because lists can change in size
after being created.

• You were shown how to do this with 1D lists in the previous section.

• You will see how this can be done with 2D lists in this section.

• Of course the variable(s) must store the current size of the list.

– Use the len() function:

• You have seen how to use this function in conjunction with 1D lists and you
will be shown how to employ it with 2D lists when file input-output (reading
information from a variable sized file into a 2D list).

6/2/2025

Composites 6

James Tam

Copying Lists

• Important: A variable that appears to be a list is really a
reference to a list.
– Recall: the reference and the list are two separate memory locations!

matrix = [[0, 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

– Wrong way to ‘copy’ a 2D list

aList1 = aList2 (Why is this wrong? Hint: recall what is stored in

aList1 and aList1)

James Tam

Copying Lists: Example

• Name of the example program: 3copyingListsBothWays.py

• This is the wrong way.

aGrid1 = create()

aGrid2 = aGrid1

aGrid1[3][3] = "!"

print("First list")

display(aGrid1)

print("Second list")

display(aGrid2)

FYI:
def create():

aGrid = [["*","*","*","*"],
["*","*","*","*"],
["*","*","*","*"],
["*","*","*","*"]]

return(aGrid)

6/2/2025

Composites 7

James Tam

• Shallow copy (“wrong way”): copies what’s stored in the
reference (location of a list).

• Deep copy (correct way): copies the data from one list to
another.
– Create a new list e.g. aList2 = [0]*3

– Copy each piece of data (list elements) from one list to another e.g.
aList2[0] = aList1[0] (use a loop to copy all elements)

New Terminology

Code
aList1 = [1,2,3]
aList2 =aList1

aList1 [1, 2, 3]

aList2

aList1 [1, 2, 3]

aList2 [0, 0, 0]

James Tam

Creating A New List By Copying An Existing List

• This is not a comprehensive list of approaches for copying

• Assume we have this list:
list1 = [1,2,3]

– Method 1 (python specific): Utilize one of the prebuilt python methods
for copying a list (if you don’t know which one to use then make sure it
performs a “deep copy”).

• Check assignment requirements to see if this approach is allowed.

– Method 2 (python specific): write the code yourself using a FOR-loop
for element in list1:

list2.append(element) #Append element from one list to another

– Method 3(language independent): write the code yourself using a
WHILE-loop.
i = 0

list2 = []

size = len(list1)

while(i<size):

list2.append(list1[i]) #Append element from one list to another

i = i + 1

6/2/2025

Composites 8

James Tam

Copying Lists: Example (2)

• This is the right way.
aGrid1 = create()

aGrid2 = create()

copy(aGrid1,aGrid2)

copy(aGrid1,aGrid2)

aGrid1[0][0] = "?" #These statements prove there’s two lists

aGrid1[3][3] = "?"

print("First list")

display(aGrid1)

print("Second list")

display(aGrid2)

def copy(destination,source):
for r in range (0,SIZE,1):

for c in range (0,SIZE,1):
destination[r][c] = source[r][c]

James Tam

Copying Lists: Write The Code Yourself

• General rule of thumb: you should not use some else’s pre-
created list copy method (e.g. those defined when you
“import copy”)

• Why do all this work?
– Not all programming languages have this capability (you will need to

know how to do it yourself).

– Writing the code yourself will provide you with extra practice and help
you become more familiar with list (in other languages ‘array’)
operations.

6/2/2025

Composites 9

James Tam

Boundary Checking Lists

• Checking if a particular location (row, column) for a 2D list is
inside the bounds of the list is a common program task.

• Rather than repeating the check it may be more efficient to
write one Boolean function to implement this task.

James Tam

Boundary Checking Lists (2)

• Name of the example: 4boundary_checking
SIZE = 4

FIELD = " "

FOREST = "^"

WATER = "W"

BURNT = "F"

ERROR = "!"

def display(world):

r = -1

c = -1

for r in range (0,SIZE,1):

for c in range (0,SIZE,1):

print(world[r][c], end="")

print()

print()

6/2/2025

Composites 10

James Tam

Boundary Checking Lists (3)

def editLocation(row,column,world):

world[row][column] = "!"

def generateElement(randomNumber):

element = ERROR

if((randomNumber >= 1) and (randomNumber <= 50)):

element = FIELD

elif((randomNumber >= 51) and (randomNumber <= 80)):

element = FOREST

elif((randomNumber >= 81) and (randomNumber <= 100)):

element = WATER

else:

element = ERROR

return(element)

James Tam

Boundary Checking Lists (4)

def getLocation():

outOfBounds = True

row = -1

column = -1

while(outOfBounds == True):

print("Enter location of square to change to a !")

row = int(input("Enter a row (0-3): "))

column = int(input("Enter a column (0-3): "))

outside = isOut(row,column)

if(outside == True):

print("Row=%d, Col=%d" %(row,column), end = " ")

print("is outside range of 0-" + str(SIZE) + ".")

else:

outOfBounds = False

return(row,column)

6/2/2025

Composites 11

James Tam

Boundary Checking Lists (5)

def initialize():

world = []

r = -1

c = -1

randomNumber = -1

newElement = ERROR

for r in range (0,SIZE,1):

randomNumber = random.randrange(1,101)

element = generateElement(randomNumber)

tempRow = [element] * SIZE

world.append(tempRow) # Add in new empty row

print(tempRow)

return(world)

James Tam

Boundary Checking Lists (6)

def isOut(row,column):

outside = False

if((row < 0) or \

(row >= SIZE) or \

(column < 0) or \

(column >= SIZE)):

outside = True

return(outside)

SIZE = 4
0 1 2 3

0

2

3

1

6/2/2025

Composites 12

James Tam

Boundary Checking Lists (7)

def start():

stillRunning = True

answer = ""

row = -1

column = -1

world = initialize()

while(stillRunning): #while(stillRunning == True):

display(world)

row,column = getLocation()

editLocation(row,column,world)

answer = input("Hit enter to continue,'q' to quit: ")

if((answer == "q") or (answer == "Q")):

stillRunning = False

start()

Creating And Initializing A Multi-Dimensional
List In Python: Dynamic Creation

General structure (Using
loops):
• Create a variable that refers to an

empty list

• Create list:

•One loop (outer loop) traverses the
rows.

• Each iteration of the outer loop creates
a new 1D list (empty at start)

•Then the inner loop traverses the
elements of the newly created 1D list
creating and initializing each element in
a fashion similar to how a single 1D list
was created and initialized (add to end)

• Repeat the process for each row in
the list

Rowr = 0

c=0 c=1 c=2 c=3

List ref

Rowr = 1

Rowr = 2

Etc.

[]

aGrid = []
for r in range (0, 3, 1):

aGrid.append ([])
for c in range (0, 3, 1):

aValue = <Some source>
aGrid[r].append(aValue)

6/2/2025

Composites 13

James Tam

Repeating Just The Steps In The Code Creating The List

1. Create a variable that refers to an empty list

aGrid = []

2. Successively create rows in the list

for r in range (0,noRows,1):

aGrid.append ([])

3. Each row is a 1D list, add elements to the end of the 1D list (empty list
needed in #2 so that the append method can be called to add elements
to the end).

for c in range (0,noColumns,1):

aGrid[r].append("*")

– The [r] part of specifies which row the loop will add elements on the end.
aGrid[r].append("*")

Recall ‘append’ is unique to
a list. Append won’t work if
for other types of variables
except list but even an
empty list can have new
elements appended.
num = 123
num.append(4) #error

Example 2D List Program: A Variable Sized 2D
List (Dynamic)

•Name of the example program: 5variableSize2DList.py
aGrid = []

noRows = int(input("Number rows: "))

noColumns = int(input("Number columns: "))

#Create list

for r in range (0,noRows,1):

aGrid.append ([]) #Create empty row, add to list

for c in range (0,noColumns,1):

element = input("Type in a single character: ")

aGrid[r].append(element) #Add to the end of new row

#Display list

for r in range (0,noRows,1):

for c in range (0,noColumns,1):

print(aGrid[r][c], end="")

print()

6/2/2025

Composites 14

James Tam

2D Lists: Using Append

table = [[0, 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

table.append([2,1,7]) #Where was the append occurring?

print(table)

table[3].append(3) #Where was the append occurring?

print(table)

#What element is the append applied to?

table[2][1].append(888)

Hint: add the following before the last instruction

print(table[2][1])

Final JT hint: Make sure
you apply the right
operation on the right
type of variable.

James Tam

2D Lists: Level Of Access

• You need to know what you are accessing: reference, whole
list, row, element (at a row/column).

• The example illustrates this issue via the append method but
the append must be used on the right type of object.

• Name of the example program: 6misapplyingAppend.py
aGrid = []

noRows = int(input("Number rows: "))

noColumns = int(input("Number columns: "))

#Create list

for r in range (0,noRows,1):

aGrid.append ([])

for c in range (0,noColumns,1):

aGrid.append("*")

#print(aGrid)

#print("# elements", len(aGrid))

#print("type of the list", type(aGrid))

#print(len(aGrid))
#print(len(aGrid[0]))

6/2/2025

Composites 15

James Tam

2D Lists: Level Of Access (2)

Hard-coded 2D list

anotherGrid = [[1,2,3],

[3,2,1]]

print("anotherGrid: type of information for 2nd element (1D
list or string)", type(anotherGrid[1]))

print("aGrid: type of information for 2nd element (1D list or
string)", type(aGrid[1]))

#Display list

for r in range (0,noRows,1):

for c in range (0,noColumns,1):

print(aGrid[r][c], end="")

print()

print("# elements", len(anotherGrid))
print("type of the list", type(anotherGrid))
print(len(anotherGrid))
print(len(anotherGrid[0]))

James Tam

Lists: Final Notes

• Reminder: python list elements need not be all the same type.

• Python 2D lists need not be rectangular.

aList = [[1,True,"hi"],

[1,2.3],

[]]

Row index 0: int, bool, string
Row index 1: int, float
Row index 2: empty list

6/2/2025

Composites 16

Extra Practice

List operations:
– For a numerical list: implement some common mathematical functions

(e.g., average, min, max, mode – last one is challenging).

– For any type of list: implement common list operations (e.g., displaying
all elements one at a time, inserting elements at the end of the list,
insert elements in order, searching for elements, removing an element,
finding the smallest and largest element).

• In order to develop your programming skills you should write the code
yourself rather than using predefined python methods such as append, min,
max etc.

After This Sub-Section You Should Now Know

• When to use lists of different dimensions

• Basic operations on a 2D list

• How to create a 2D list: fixed size and a variable sized list by
using the repetition operator.

• How to access a 2D list: the whole list, rows in the list and
individual elements.

• How to properly copy the contents of a 2D list into another 2D
list as well as a common mistake when copying lists.

• The use of a named constant to ensure that list boundaries are
adhered to.

• The ability to dynamically creating 2D lists using the append
function for both the rows and columns.

