
Electronic representations 1

James Tam

Representing Data/Information

• What is the decimal based number system.

• How do other, non-decimal, systems work (binary,
octal and hex).

• How to convert from a non-decimal number
systems to decimal.

• How are negative and rational numbers
represented on the computer.

James Tam

Information Vs. Data

•Data:
- The raw information without any context

- Examples (you don’t have to interpret this data unless you are taught
how to do this sometime during the semester).

•12, 07, 1941 (or Dec. 7, 1941)
•04, 05, 2063 (or April 5, 2063)
•01111000 00110010 01000101 (computer stores all data as binary)

•Information:
- Data that has been processed or manipulated in order to provide a

meaningful context

- Context for the above examples of data:
•World War II: Japan launches a surprise attack on the American naval base at

Pearl Harbor resulting on the latter’s entry into the war.
•Star Trek: The first contact of an extraterrestrial race (Vulcans) with humans

and this leads to the eventual founding of the United Federation of planets.
•Third example: If the bits are interpreted as text: x2E
•Third example: if the bits are interpreted as (RGB) colors:

Electronic representations 2

James Tam

Data Vs. Information: Using A Computer

User communicates information

e.g. 1 what is 2*3

e.g. 2, set color to red

• Stores information as data
(binary patterns) e.g. 010*011

• If needed process the data e.g.
010*011=110

Translate and display the

information as output to the user

e.g. 1 what is 2*3=6

e.g. 2, change color of shape to

red

James Tam

Inappropriate Conversion: Data To Text

•Opening an image in a text-only program (Notepad)

•This is a pic of your course instructor - see the resemblance? ;)
- It’s ‘garbage’ because the bits are not interpreted as an image (e.g. 24

bits=a pixel) but interpreted as ASCII (e.g. 8 bits=a single character).

Electronic representations 3

James Tam

Alternative Presentation Of These Concepts

•To ensure that you don’t “miss anything” I’ve included in the
next three screens how Richard Zhao and Jonathan Hudson
envisioned how this information was to be communicated in
this course.

James Tam

What is Data?

Data: raw facts, representation of
information, no context

Encoding: The
translation of
information into data

(Decoding the other
direction

Data represents information

Electronic representations 4

James Tam

Information Processing

Moral: computers process data, not information – it is our
responsibility to interpret the data correctly.

Using a computer?

Encode information
into data

Process the data
Translate data back

into information

A change of information in any manner detectable by an
observer

James Tam

Storing Data

Encoding schemes translate integers,
real numbers, letters, pictures, … into

bits

All data in a computer is either a 0 or 1

Called a bit
Electrically, this is a switch
that is either open or closed

Electronic representations 5

James Tam

Bit (Binary Digit)

•You have probably heard of this term in some context e.g. a
hard drive is 1 Terabyte in capacity and there’s 8 bits in 1 byte
i.e. that hard drive is (1 byte = 8 bits so multiply capacity in
bytes to determine capacity in bits – not commonly done) 8
Terabit capacity drive.

•All digital information is stored in the form of a bit (bits are not
just zeros and ones as you may have been lead/mislead to
believe).

•The key characteristic of a bit is that information is stored in
one of two states.

James Tam

Bits: Example Implementations

•Computer bus: wires that transit information via electrical
signals on wires.

•Optical drives: CD/DVD

•RAM (requires the computer to be on to maintain power)

•Boolean variables (python examples)
isDone = True

isDone = False

Electronic representations 6

James Tam

What Is Decimal?

•Base 10
- 10 unique symbols are used to

represent values

0

1

2

3

4

5

6

7

8

9

10

:

The number of digits is based
on…the number of digits

The largest decimal value that can be

represented by a single decimal digit is 9

= base(10) - 1

James Tam

Representing Integer Information

•What you have been taught is the decimal-based system.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31

Etc.

Column 1

counts

through all

10 possible

values

For the next value,

column 1 resets back

to zero and column 2

increases by one

Column 1 counts

through all 10

possible values,

column 2 remains

unchanged

For the next value,

column 1 resets back

to zero and column 2

increases by one

Electronic representations 7

James Tam

Decimal

•“Base ten”

•Employs ten unique symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

•Each digit can only take on the value from 0 – 9
- Once a column has traversed all ten values then that column resets back to

zero (as does it right hand neighbours) and the column to it’s immediate
left increases by one.

James Tam

Recall: Computers Don’t Do Decimal!

•Most parts of the computer work in a discrete state:
- On/off

- True/false

- Pitted/smooth

- Connected/not connected

•These two states can be modeled with the binary number
system.

Electronic representations 8

James Tam

Binary

•Base two

•Employs two unique symbols (e.g. 0 and 1)

•Largest value that can be represented by 1 binary digit = 1 =
base(2) – 1
- Confused? Apply this formula to decimal: largest value represented in

decimal = base(10)-1

•Stepping through binary values.
- Once a column has traversed both values then that column resets back to

zero (as does it right hand neighbours) and the column to it’s immediate
left increases by one.

- This is similar to decimal but because each digit can only take on the value 0
or the value 1 (instead of 0 – 9 for decimal) increments will affect higher
order (left most) columns more quickly.

James Tam

Reminder: Incrementing By 1 In Decimal

Symbols are used up every

10 rows in the lowest order

(right most/first) column.

Electronic representations 9

James Tam

Incrementing By 1: Binary

Right most column increment

through all symbols (in this

case 0,1). Symbols are used

up every 2 rows.

“Used up” all

symbols in

previous column,

increase next

column to left by 1

James Tam

Counting In Binary

Decimal value Binary value Decimal value Binary value

0 0000 8 1000

1 0001 9 1001

2 0010 10 1010

3 0011 11 1011

4 0100 12 1100

5 0101 13 1101

6 0110 14 1110

7 0111 15 1111

Electronic representations 10

James Tam

Decimal: Represents Values Using Powers Of Ten

•Example: 482
- Breaking it down:
•4 of the hundreds units 400
•8 of the tens units 80
•2 of the ones units 2
•Total 482

- These values are actually computed with powers of 10
•Hundreds units: 4x102 = 4x100 = 400
•Hundreds units: 8x101 = 8x10 = 80
•Ones units: 2x100 = 2x1 = 2
•Sum 482

- You can label the exponents by adding a super script above the digits.

2 1 0

For 231

James Tam

Binary: Represents Values Using Powers Of Two

•Example: 10112 (binary) = 1110 (decimal)
- Labeled with a super script (allows us to see the ‘powers/exponents)

1 0 1 1

- Breaking it down:
•1x23 = 1x8 = 8
•0x22 = 0x4 = 0
•1x21 = 1x2 = 2
•1x20 = 1x1 = 1
•Sum 11

0123

For 231

Electronic representations 11

James Tam

You’ve Learned To Convert: Any Base To
Decimal

•Evaluate the expression: the base raised to some exponent1,

multiply the resulting expression by the corresponding digit and
sum the resulting products.

•General formula:

d7 d6 d5 d4. d3 d2 d1b
(d7xb3)+(d6xb2)+(d5xb1)+(d4xb0)+(d3xb-1)+(d2xb-2)+(d1xb-3)

Example

1 1. 12

3 2 1 0 -1 -2 -3 Super script (power)

Super script (power)1 0 -1

Value in decimal = (1x21) + (1x20) + (0x2-1) = (1x2)+(1x1)+(1/2) = 2.5

1/2 : (1x2-1) = 1x1/21 = 0.5

Reminder: evaluate a negative exponent by determining the reciprocal
of a positive exponent

For 231

James Tam

Students Do: Exercises

•Convert the following values from binary to decimal
100 000 2 -> ??????10

100 001 2 -> ??????10

111 111 2 -> ??????10

0 000 0012 -> ??????10

•To check your work:
- There are various online converter websites

- Alternatively: write a python program to do the calculation (hint: you can
use the integer division and modulo operators to extract the digits from
the number).

•You’ll learn the (more involved) formula for converting from
decimal in the next section.
- Quick look ahead: you keep performing integer divisions by the target

base (in this case 2) until the remainder is less than the target base.

For 231

Electronic representations 12

James Tam

Why Bother With Binary?

1. It’s the method of representing/storing information
- ASCII (American Standard Code for Information Interchange)

- UNICODE: it’s augmented the original ASCII representations to include
additions such as non-English languages.
• UNICODE is stored on a electronic device using the UTF-8 system.

- All information is stored on an electronic device is using some of binary
e.g. your images, videos are encoded using some form of binary.

2. It's the language of the computer
- A computer program must be translated to native machine language

(specific to hardware/operating system ‘platform’) in order to run.
• Interpreted languages such as python, JavaScript are translated each time the

program executes.
• Compiled languages (programs installed on your computer/phone) are

translated once and it’s the translated version that’s installed (and then
executed) on your device.

James Tam

Representing Information: ASCII

•Uses 7 bits to represent characters

•Max number of possibilities = 27 = 128 characters that can be
represented
- 8 bits were actually used for various reasons: new characters could be

represented, storing as 8 bits rather than 7 is easier etc.

•e.g., 'A' is 65 in decimal or 01000001 in binary. In memory it
looks like this:

0 1 0 0 0 0 0 1

Electronic representations 13

James Tam

ASCII Codes

•https://www.ascii-code.net/

•Many codes produce a
visible character e.g. letters,
numbers, symbols.

•Other “control codes” are
used for text formatting e.g.
tab, new line etc.

James Tam

The ‘Gist’ Of Some Of The ASCII Codes

ASCII Decimal Binary

Invisible (control characters) 0 – 31 00000000 – 00011111

Punctuation, mathematical
operations

32 – 47 00100000 – 00101111

Characters 0 - 9 48 - 57 00110000 – 00111001

Comparators and other
miscellaneous characters : ; ?
@

58 – 64 00111010 – 01000000

Alphabetic (upper case A - Z) 65 - 90 01000001 – 01011010

More miscellaneous characters
[\] ̂_ '

91 – 96 01011011 – 01100000

Alphabetic (lower case a - z) 97 – 122 01100001 – 01111010

More miscellaneous characters
{ | } ~ DEL

123 – 127 01111011 - 01111111

https://www.ascii-code.net/

Electronic representations 14

James Tam

Drawbacks Of ASCII

•A good start but limited in
what can be represented.

•“Latin character set”
(alphabet).

•Accenting is not possible:
-È ĕ Ĉ

James Tam

ASCII Encoding

•What you should already know.

•Basic character information for the first 128 combinations (0-
127) is specified by ASCII codes.
- It includes upper/lower case alphabetic characters, all ten digits,

punctuation and more…characters used in basic communications in
English (and other languages which use alphabetic characters).

•8 bits are used even though only 7 bits are needed (27 = 128)
- The left most bit (most significant bit) is either used for error checking or

simply set to zero.

Electronic representations 15

James Tam

UTF-8 Encoding

•Previously you were given a basic introduction.

•This form of encoding is used to represent additional text
information which includes but is not limited to:
- Emoji's/emoticons

- Languages which use their own symbols rather than alphabetic characters
(Latin character set).

•To allow backward compatibility: The first 128 UTF-8 codes are
identical to the ASCII codes.
- To save space only 1 byte is used to encode 0 - 127

•Other characters will require 2 to 4 bytes to encode.
- 2 bytes are used to encode 128 – 65,535, 216 = 65,536 combinations.

- 3 bytes are used to encode 0-16,777,215, 224 = 16,777,216 combinations.

- 4 bytes are used to encode combinations above 16,777,216.
•FYI for those who will ask: 232 = over 4 billion combinations (4.294.967.296)

James Tam

Space Needed To Represent A Character.

•A character can be represented with one of the following
possible lengths: 1 byte (8 bits), 2 bytes (16 bits), 3 bytes (24
bits), 4 bytes (32 bits).

•How do we ‘know’ the number of bytes used?

•The ‘prefix’ (left most bits) is what distinguishes the 4 cases.
- 1 byte:

- 2 bytes:

- 3 bytes:

- 4 bytes:

•The other bytes (if any) cannot contain these bit patterns at
the start.
- They must begin with 10 while the other 6 bits in the byte can either be

0 or 1.

- “Continuation bytes” (not left most) start with the pattern 10.

0 7 more bits

110 13 more bits

1110 20 more bits

11110 27 more bits

110b bbbb 10bb bbbb

1110 bbbb 10bb bbbb 10bb bbbb

1111 0bbb 10bb bbbb 10bb bbbb 10bb bbbb

b: bit can either be 0 or 10bbb bbbb

Electronic representations 16

James Tam

Benefits Gained Using UTF-8 Encoding

•Space efficiency.
- More frequently occurring language sets only using common characters

e.g. A-Z, a-z only require 1 byte to store.

•“Self synchronization” [JT: error handling]
- If bit patterns appear in unexpected locations you know the information

for the character is invalid (corrupted during storage or transmission).

•It’s the standard encoding used by the WWW: default for hmtl
(web pages end in ‘.html’ or ‘htm’ (older suffix) and most web
protocols (protocol a method of transmission).

•Supported with many programming languages such as but not
limited to python (avoids bugs due to mismatched encoding).

1111 0bbb 10bb bbbb 10bb bbbb 10bb bbbb

Invalid: left-

most byte

starts with 10

Invalid: any of the connector

bytes start with one of the

prefixes e.g. 1111 0

James Tam

Python And UTF-8

•With python 3.x UTF-8 is the default method of encoding.
- Just type the desired character and it will be properly displayed as the

character is encoded/represented in the extended (beyond ASCII)
approach i.e. more than just the basic alphabetic characters can be
represented.

- Name of the full example: 1UTF8_example_multi_lingual_hello
print("Hello")
print("Bonjour") #French
print("Hello po") #Tagalog
print("Hallo") #Dutch, German
print("Hola") #Spanish

print("Allô") #Quebecois French
print("你好") #Traditional Chinese
print("مرحبا") #Arabic
print("שלום") #Hebrew

Electronic representations 17

James Tam

Unicode Vs. UTF-8

•Similar to ASCII each character is
mapped to a unique numeric value
using Unicode mappings.

- Unlike ASCII Unicode includes more
than just 128 mappings although the
original mappings are used for these
first combinations to ensure backward
compatibility e.g. ‘A’ maps to 65 using
ASCII or Unicode.

•UTF-8: the numeric Unicode is
then stored using UTF-8 standards
for encoding: 1 – 4 bytes.

- E.g. 1, B Unicode=66 is stored using 1
byte.

- E.g. 1, ć Unicode=263 is stored using 2
bytes according to UTF-8 (Co-pilot)

Mappings from

128-255 reserved

for ASCII

Mappings after

256 are

specified

using Unicode

1 Additional explanations

• https://askanydifference.com/difference-between-unicode-and-utf-8/ (last viewed 2025)

• https://blog.hubspot.com/website/what-is-utf-8 (last viewed 2024)

James Tam

Alternative Presentation Of These Concepts

•Here’s an alternative presentation of UTF-8 as an optional
resource to help you understand this method of
representation.

•The next two screens were created by Richard Zhao and
Jonathan Hudson.

https://askanydifference.com/difference-between-unicode-and-utf-8/
https://blog.hubspot.com/website/what-is-utf-8

Electronic representations 18

James Tam

Representing More Characters

•UTF-8
- Another encoding scheme for characters

•Variable length – 1, 2, 3 or 4 bytes per character

- Compatible with ASCII

- Consider each byte
•Left most bit is 0? Usual ASCII Character
•Left most bits are 110? 2 byte character
•Left most bits are 1110? 3 byte character
•Left most bits are 11110? 4 byte character

•“tears of joy” emoji

o 0x F0 9F 98 82

which is

o 11110000 10011111 10011000 10000010
This Photo by Unknown Author is licensed under CC BY-SA

James Tam

UTF-8

This Photo by Unknown Author is licensed under CC BY-SA

https://es.wikipedia.org/wiki/Usuario:Swazmo/27
https://creativecommons.org/licenses/by-sa/3.0/
https://stackoverflow.com/questions/43230082/why-adding-the-two-bytes-of-utf-8-encoding-doesnt-give-the-code-point-of-the-ch
https://creativecommons.org/licenses/by-sa/3.0/

Electronic representations 19

James Tam

Encoding Data: References

•ASCII
- https://www.bbc.co.uk/bitesize/guides/zsnbr82/revision/5

•UTF-8:
- https://www.w3schools.com/charsets/ref_html_utf8.asp (last viewed fall

2024).

- https://blog.hubspot.com/website/what-is-utf-8 (last viewed fall 2024).

- "UTF-8 support in the Microsoft GDK". Microsoft Learn. Microsoft Game
Development Kit (GDK). Retrieved 2023-03-05.

- "Encoding Standard". encoding.spec.whatwg.org. Retrieved 2020-04-15.

James Tam

A Problem With Binary

•1001 0100 1100 1100?

•1001 0100 1100 0100?

•1001 0100 1100 0011?

Binary is not intuitive

for human beings and

one string of binary

values can be easily

mistaken for another

For 231

https://www.w3schools.com/charsets/ref_html_utf8.asp
https://blog.hubspot.com/website/what-is-utf-8

Electronic representations 20

James Tam

A Shorthand For Binary: Octal

•Machine Octal
•language value
•1010111000000 012700

•1001010000101 011205

•Converting from binary to octal: 3 bits are grouped into one octal digit
- E.g. 110 = 5

- You can look the values up in the table provided at the end of these notes.

- Leading zeros don’t count e.g. 0100 in decimal is the same as 00100 or 100.

For 231

James Tam

Octal

•Base eight

•Employs eight unique symbols (0 - 7)

•Largest value that can be represented by 1 octal digit = 7 =
base(8) - 1

For 231

Electronic representations 21

James Tam

Incrementing By 1: Octal

Right most column increment

through all symbols (in this

case 0,1,2,3,4,5,6,7)

“Used up” all

symbols in

previous column,

increase next

column to left by 1

For 231

James Tam

Table Of Octal Values

Decimal value Octal value Decimal value Octal value

0 0 8 10

1 1 9 11

2 2 10 12

3 3 11 13

4 4 12 14

5 5 13 15

6 6 14 16

7 7 15 17

For 231

Electronic representations 22

James Tam

Octal: Represents Values Using Powers Of Eight

•Example: 2738 (octal) = 18710 (decimal)
- Labeled with a super script lets us to see the powers/exponents.

2 7 3

- Breaking it down
•2x82 = 2x64 = 128
•7x81 = 7x8 = 56
•3x80 = 3x1 = 3
•Sum 187

012

For 231

James Tam

Students Do: Exercises

•Convert the following values from octal to decimal
68 -> ??????10

78 -> ??????10

108 -> ??????10

268 -> ??????10

318 -> ??????10

2458 -> ??????10

7128 -> ??????10

Computer geek joke: Oct 31 is actually Dec 25 (hint: it’s an application of
the lesson not just some random humor).

For 231

Electronic representations 23

James Tam

Problems With Binary: Got Worse As Computers Got
More Powerful

•1001 0100 1000 0000 1100 0100 0110 1010?

•Or

•1001 0100 1000 0000 1100 0100 0110 1011?

For 231

James Tam

Hexadecimal: An Even More Compact Way Of
Representing Binary Instructions

•Machine Hexadecimal
•language value
•1010011000001 14C1

•110000011100000 60E0

•FYI: 4 binary digits are grouped to represent 1 hexadecimal digit

- e.g. 1110 = E

- (You can look these values up in the table near the end of these notes).

Example from 68000 Family Assembly Language by Clements A.

For 231

Electronic representations 24

James Tam

Hexadecimal (‘Hex’ For Short)

•Base sixteen

•Employs sixteen unique symbols (0 – 9, followed by A - F)

•Largest decimal value that can be represented by 1 hex digit =
15

For 231

James Tam

Incrementing By 1: Hexadecimal

Right most

column increment

through all

symbols (in this

case

0,1,2,3…D,E,F)

“Used up” all

symbols in

previous column,

increase next

column to left by 1

For 231

Electronic representations 25

James Tam

Table of Hexadecimal Values

Decimal
value

Hexadecimal
value

Decimal
value

Hexadecimal
value

0 0 9 9

1 1 10 A

2 2 11 B

3 3 12 C

4 4 13 D

5 5 14 E

6 6 15 F

7 7 16 10

8 8 17 11

For 231

James Tam

Hexadecimal: Represents Values Using Powers Of 16

•Example: 2A816 (hex) = 68010 (decimal)
- Labeled with a super script (allows us to see the ‘powers/exponents)

2 A 8

- Breaking it down:
•2x162 = 2x256 = 512
•Ax161 = 10x16 = 160
•8x160 = 8x1 = 8
•Sum 680

012

For 231

Electronic representations 26

James Tam

Students Do: Exercises

•Convert the following values from hexadecimal to decimal
616 -> ??????10

A16 -> ??????10

C16 -> ??????10

F16 -> ??????10

2616 -> ??????10

2458 -> ??????10

7128 -> ??????10

For 231

James Tam

Summary (Decimal, Binary, Octal, Hex)

Decimal Binary Octal Hex Decimal Binary Octal Hex

0 0000 0 0 8 1000 10 8

1 0001 1 1 9 1001 11 9

2 0010 2 2 10 1010 12 A

3 0011 3 3 11 1011 13 B

4 0100 4 4 12 1100 14 C

5 0101 5 5 13 1101 15 D

6 0110 6 6 14 1110 16 E

7 0111 7 7 15 1111 17 F

For 231

Electronic representations 27

James Tam

Other Units Of Measurement: Positive
Numbers

•By itself a bit is inadequate for representing values.
- Only 2 values (0,1 or zero to 20-1) = 20

•Larger groupings are needed.
- Byte uses 8 bits e.g. 0001 1000

•256 values = 28 (range from 0-255 or 0-28-1)

- Half word/short uses 16 bits:
•65,536 values = 216 (range from 0-65,535 or 0-216-1)

- Word uses 32 bits:
•232 ~4 billion values (range from 0-232-1)

- Double word/long uses 64 bits
•264 possible values (range from 0-264-1)

1 bit/2 combos 2 bit2/4 combos

James Tam

Units Of Measurement By Operating System

•Keep in mind whether bits or bytes are used when
specifications are listed.
- Storage (hard drives), memory (RAM) use bytes

- ISP transmission speeds use bits e.g. 1,000 Mbps is actually 1,000

Mbits/second (125 MBs or 125,000,000 bytes, Blu-ray stores ~25 GB or

25,000,000,000 = 200 seconds).

- Computers typically show transmissions as bytes/second.

Value Windows MAC

1 byte 8 bits 8 bits

1 Kilobyte 1,000 bytes or 1024 = 210 1000 bytes (1 KB)

1 Megabyte ~~1,000,000 bytes or 1,048,576 = 220 1,000,000 bytes (1 MB)

1 Gigabyte ~1 billion bytes or 1,073,741,824 = 230 1,000,000,000 bytes (1 GB)

1 Terabyte ~1 trillion bytes = 240 1,000,000,000,000 bytes (1 TB)

Electronic representations 28

James Tam

Units Of Measurement: Some Computer
Applications

•Bytes (example computer ad):
- Acer Predator P03 Gaming PC

- Intel Core i7-13700F 2.1 /5.2 GHz

- 16 GB of RAM

- 1 TB HDD/512 GB

•Bits:
- (From the above ad)

- RJ45 Ethernet, Wi-Fi 6E, Bluetooth 5.3, 10 USB ports (Front=4: Type A USB 10
Gbps, Type C USB 20 Gbps; Back: USB Type A 480 Mbsx4, USB Type A 5 Ggps x 2,
HDMIx1, Display portx3

- What does this mean:
•Copying the contents of 1 TB storage device (speeds is the ideal max. – often not realized)

o USB C 20 Gbps: 6.67 minutes

o USB A 480 Mbps: 277.78 minutes
•More examples and the formulas used to derive the above times:

o https://cspages.ucalgary.ca/~tam/2025/217F/examples/representations/Transfer_s
peed_comparisons.xlsx

- Date of last access
•Last accessed from www.bestbuy.ca January 2024

James Tam

Representing Negative Numbers

•One bit is used for the sign, the other bits (# bits - 1) is used to
represent the magnitude e.g. 4 bits (1 for sign, 3 for magnitude)

•There are different sub-approaches that use a sign bit.
- Sign-magnitude is the one covered in this class now.

- (The others ones and twos complement may be covered later this term or
in another class, likely CPSC 355).

- Sign magnitude with 8 bits
•Format:
s bbb bbbb

•Examples:

0 000 0011 (positive 3)

1 000 0100 (negative 4)

Sign bit:

0=positive,

1 = negative

Magnitude:

Represents quantity (size)

https://cspages.ucalgary.ca/~tam/2024/231F/examples/representations/Transfer_speed_comparisons.xlsx
http://www.bestbuy.ca/

Electronic representations 29

James Tam

Representing Real Numbers

•The approximation of a real number is represented as a float.

•Standard Representation is IEEE 754 Floating Point
-0.0002589 becomes -2.589 * 10-4

•32-bit floating point representation:
- sign (1 bit), exponent (8 bits), mantissa (23 bits)

•64-bits:
- sign (1 bit), exponent (11 bits), mantissa (52 bits)

•Why an approximation?
- Not all values can be represented e.g. 0 >= range <=1 there’s an infinite

number of values.
•Or a single expression can have an infinite number of possible digits e.g. 1/3

- Even with 64 (or more bits) to store a real number some values will
missed or stored incorrectly.

James Tam

Illustrative Example: Why Floats Only
Approximate Real Values

•Example of (non IEEE floating point): 5 digits used to represent
the mantissa:

•The exponent affects how much the decimal shifts ‘floats’”
- Size of the exponent indicates the number of shifts e.g. squared = 2 shifts

- Sign of the exponents specifies direction.
•Negative exponent: shift right when storing as floating point
•Positive exponent: shift left when store as floating point

- e.g. One: 123.45 is represented in floating point as 12345 * 10-2

- e.g. Two: 0.12 is represented in floating point as 12000 * 10-5

- e.g. Three: 123456 is represented in floating point as 12345 * 101

- Notice: in the last example one digit is lost during storage.
•This serves to illustrate why floating point (any programming language) only

approximates real values.
•Precision may be lost even with non-repeating rational values.

Electronic representations 30

James Tam

Programming Lesson: Floating Point Representation

•Note: the drawbacks that come from storing real values is due
to the floating point representation (not unique to python).

•Avoid floats when an integer will do!
- Example: represent currency as whole cents rather than fractional dollar

values.

•Never check for equality when comparing floats.
- Name of the full example: 2_floats_not__same_as_real.py

num = 1.0 - 0.55
print(num == 0.45): #Don’t do this!

•If a float is necessary then consider the use of an epsilon.
- Example use (if you’re interested, it will be covered this semester if the

specific need arises):
•https://pages.cpsc.ucalgary.ca/~tamj/2021/217P/ (Branching Part II)

James Tam

Copyright Notification

•Unless otherwise indicated, all images in this presentation
were provided courtesy of James Tam.

slide 60

