
9/9/2025

Programming introduction 1

Getting Started With Python
Programming: Part II

•Converting between different types of data

•Operator overloading

•Formatting text output

•Different types of programming errors

James Tam

Storing Information: Bottom Line (You Need Know)

• Information is stored differently between strings, integers and floats

– E.g. String “1” = 00110001 (ASCII) whereas the number 1 = 1111 1111 (2s
complement).

• For now: you don’t have to know how these values were obtained.

• Why it important to know that different types of information is stored
differently?

– One motivation: sometimes students don’t why it’s significant that “123” is not
the same as the number 123.

– Certain operations only apply to certain types of information and can produce
errors or unexpected results when applied to other types of information.

• Example

num = input("Enter a number")

numHalved = num / 2
Program ‘crashes’:
Cannot perform division
operation on a string

9/9/2025

Programming introduction 2

James Tam

Converting Between Different Types Of Information

• Example motivation: you get user input in the form of a string
but also you need to perform calculations on that input.

• Some of the conversion mechanisms (functions) available in
Python:

Format:
int(<value to convert>)

float(<value to convert>)

str(<value to convert>)

Examples:

Name of the full example: 1convert.py

var1 = 10.9

var2 = int(var1)

print(var1,var2)

• An error occurs if the conversion cannot be made e.g. int("t")

()

Value to convert

Converted result

Conversion function

Digits right of

decimal are

removed (truncation

- no rounding)

James Tam

Overloaded Operators

• The same symbol can have different results depending upon
the context.

• One example of where this issue may come up is when you
don’t convert the variable type when you should e.g. you get
user input in the form of a string but you don’t convert it to a
number prior to performing a mathematical operation.

• Example: the ‘plus’ operator +
– Previously this symbol represented mathematical addition because the

values left and right of the symbol (operands) were numeric e.g.,

num1 = 2 + 2

– If the operands are strings then the symbol represents the string
operation concatenation e.g.,

str1 = "2" + "2"

9/9/2025

Programming introduction 3

James Tam

Overloaded Operators (2)

• Name of the full example: 2overloadedOperator.py

var1 = "100"

var2 = "-10.5"

Concatenation operation (combines two strings).

print(var1 + var2)

Addition operation is performed.

print(int(var1) + float (var2))

#Error cannot perform a concatenation on a number

str2 = "2" + 2

James Tam

Converting Types: Extra Practice For Students

• Determine the output of the following program:
print(12+33)

print("12"+"33")

x = 12

y = 21

print(x+y)

print(str(x)+str(y))

a = 2 * 0.5

print(a)

print(3/0.5) To determine the result of dividing by a rational

number, follow these steps:

1. Express the rational number in fraction form if

necessary.

2. Multiply the first rational number by the reciprocal of the

second rational number (the divisor).

3. Multiply the numerators together and the denominators

together to find the result.

Bing generated synopsis

- That is multiply by the reciprocal of the rational value.

9/9/2025

Programming introduction 4

James Tam

More On Getting User Input

• Format:
<variable / memory location> = <name of the function i.e.
input>(<Optional: a string that acts as the prompt>)

• Example:
lastName = input("Family (last) name: ")

• Python 3.x: the value returned by input is a string

James Tam

Converting Between Different Types Of Information:
Getting Numeric Input

• Since the ‘input()’ function only returns a string so the value
returned must be converted to the appropriate type as
needed.
– Name of the full example: 3convert4Input.py

No conversion performed: problem!

HUMAN_CAT_AGE_RATIO = 7

age = input("What is your age in years: ")

catAge = age * HUMAN_CAT_AGE_RATIO

print ("Age in cat years: ", catAge)

• ‘Age’ refers to a string

not a number.

• The ‘*’ is not

mathematical

multiplication

(repetition operator)

9/9/2025

Programming introduction 5

James Tam

Converting Between Different Types Of Information:
Getting Numeric Input (2)

Input converted: Problem solved!

HUMAN_CAT_AGE_RATIO = 7

ageString = input("What is your age in years: ")

ageNum = int(ageString)

catAge = ageNum * HUMAN_CAT_AGE_RATIO

print("Age in cat years: ", catAge)

print("Alternative: combines 2 steps into 1")

age = int(input("What is your age in years: "))

catAge = age * HUMAN_CAT_AGE_RATIO

print("Age in cat years: ", catAge)

• ‘Age’ converted to

an integer.

• The ‘*’ now

multiplies a

numeric value.

James Tam

• Example:
num = 1/3

print("num=",num)

By Default Output Is Unformatted

Sometimes you
get extra spaces
(or blank lines)

The number of places of
precision is determined by
the language not the
programmer

• There may be other issues e.g., you want to display output
in columns of fixed width, or right/left aligned output

• There may be times that specific precision is needed in the
displaying of floating point values

9/9/2025

Programming introduction 6

James Tam

Formatting Output

• Original approach: but compatible with many
languages such as C (printf), Java
(System.out.printf) (covered if there is time):
format specifiers and escape codes.

• Second approach developed: using the Format
class (Java has an equivalent class
MessageFormat).

• Current approach for python: using f-string.
– Powerful (most options)

– Some find it more complicated than the original approach.

– As of 2025: You may note fewer resources available that
clearly AND completely explain its usage (typically you see
examples for a few specific cases).

– No wide spread equivalents in other languages e.g. in Java
you can try ~format() method of class String.

James Tam

Format Specifiers (If There’s Time)

• Format:
print ("%<placeholder for type of info to display/code>"
%<source of the info to display>)

• Example (starting with simple cases):
– Name of the full example: 4formatSpecifiersAsPlaceholders

num = 123

st = "cpsc 231"

print("num=%d" %num)

print("course: %s" %st)

num = 12.5

print("%f %d" %(num,num))

Doesn’t literally display
this: It’s a placeholder (for
information to be
displayed)

9/9/2025

Programming introduction 7

James Tam

Types Of Information That Can Be Formatted Via
Format Specifiers (Placeholders: If There’s Time)

Specifier Type of Information to display

%s String

%d Integer

%f Floating point

%g “Scientific notation” (similar to
floating point in terms of output)

James Tam

Format Specifiers: Precision & Field Width (If There’s
Time)

• Precision:
– The number of digits to the right of the decimal point.

• E.g. 3.14 has 2 places of precision

– Alternate ways of specifying this term as: number of places of precision,
number of fractional digits

• Field width:
– Think of it as “the width of a column” (the column created for each

format specifier/placeholder).

• E.g. 1: Four column width %4s

• E.g. 2: Ten column width %10d

– When the column is too narrow to display the data then the column
width is automatically expanded.

– When the column is wider than the width of the data then extra spaces
will be added before or after the data.

• Space before the first “ab” and a space after the second “ab”

• Space after the first “ab” and a space before the second “ab”

9/9/2025

Programming introduction 8

James Tam

• Format:
%<field width>1.<precision>2<type of information>

• Examples (format specifiers to format output):
– Name of the full example:
5formatSpecifier4AlignmentNPrecision

num1 = 12.55

num2 = 12

str1 = "hi"

print ("%s" %str1)

print ("%3.1f" %num1)

print ("%6.1f" %num1)

print("%-5s" %num2)

print ("%3s%-3s" %("ab", "ab"))

print ("%-3s%3s" %("ab", "ab"))

1 2

6.<SP><SP> 21

1 2

Formatting Effects Using Format Specifiers (If
There’s Time)

• 1 A positive integer will add leading spaces before the information to display (right align), negatives will add trailing

spaces (left align). Excluding a value will set the field width to a value large enough to display the output

• 2 For numeric variables only.

6.

1

<SP> <SP><SP>

ba<SP> <SP>ba

<SP>ba <SP> ba

James Tam

• The back-slash character enclosed within quotes won’t be
displayed but instead indicates that a formatting (escape) code
will follow the slash.

– Escape codes can be used in ‘C’ and ‘Java (same usage as well).

Escape Codes/Characters (If There’s Time)

Escape sequence Description

\a Alarm: Causes the program to beep.

\n Newline: Moves the cursor to beginning of

the next line.

\t Tab: Moves the cursor forward one tab stop.

\" Double quote: Prints a double quote.

\\ Backslash: Prints one backslash.

9/9/2025

Programming introduction 9

James Tam

Escape Codes (2: If There’s Time)

• Program name: 6escapeCodes.py

print ("\a*Beep!*")

print ("hi\nthere")

print ("he\\y \"you\"")

James Tam

Text Formatting: F-String

• The newest of the three approaches with the most options but
it is specific to python.
– Not a function such as: print() or input()

– Nor is it an operator such as: +, -, *, /.

– It is a feature of python syntax that allows strings to be formatting
according to the expression.

• General format:
print(f"<string to be formatted")

• Example:
print(f"4 learning only: 4 string without formatting")

9/9/2025

Programming introduction 10

James Tam

Basic Use Of F-String

• Name of the full example: 7f_string_basic.py
num1 = 1/8

precision = -1

print("Unformatted: f-string not used num=",num1)

print(f"Unformatted: f-string used num={num1}")

print(f"3 places of precision num={num1:0.3}")

precision = int(input("Number of places of precision (0+): "))

print(f"{precision} rational digits num={num1:0.{precision}}")

James Tam

Aligning Output: F-String

• Format:
print(f"{<display data>:<field width>}") #L-align: trailing spaces

print(f"{<display data>: > <field width>}") #R-align: leading spaces

• Examples:
print(f"Name: {name:7}is me.") #L-align: trailing spaces

print(f"Age={age:>3}") #R-align: leading spaces

• Name of the full example: 8f_string_alignment.py
name = "JAMES"

age=37

print(f"Name:{name:7}is me.")
Name: is me.

JAMES (needs 5 ‘slots’)

SP SPJ A M E S

#Valid but not mandatory
print(f"Name: {name:<7}is me.")

9/9/2025

Programming introduction 11

James Tam

Aligning Output: F-String (2)

print(f"Age={age:>1}")

print(f"Age={age:>2}")

print(f"Age={age:>3}")

Column width
matches width of
data

37 (needs 2 ‘slots’)

Column winder
than the width of
data (right-align:
leading ‘space’)

Field width is 1

#No greater than, equal to Co-pilot says “3 or greater”

print(f"Age={age:>=3}")

Field width is 2

37 (needs 2 ‘slots’)

3 7

3 7

Field width is 3

37 (needs 3 ‘slots’)
SP 3 7

James Tam

F-String Aligning Output/Precision: “Required
Knowledge”

• FYI: This is how this topic was presented in the notes provided
by the course coordinator (Dr. Michelle Cheatham)

9/9/2025

Programming introduction 12

James Tam

Types Of Information: F-String

• Types:

• Format (to specify the type of the information)
print(f"…{<information>1:<type>} ")

• Some examples:
print(f"Display as integer{num2:4d}")

print(f"Display in scientific notation {1/3:e}")

Type Information displayed Symbol

Integer Whole numbers d

Float ~Rational numbers f

String Characters s

Scientific
notation

S.N.: displays as an exponent e

General Scientific notation (depends upon # rational digits) g

1: Information can take the form of a variable (name), named constant (PI) or an unnamed constant
(e.g. 3.14, "TAX_RATE")

James Tam

F-String Data Types: “Required Knowledge”

• FYI: This is how this topic was presented in the notes provided
by the course coordinator (Dr. Michelle Cheatham)

9/9/2025

Programming introduction 13

James Tam

Types Of Information: F-String

• Name of the full example: 9f_string_display_types.p
num1 = 1/8

num2 = 123

string1 = "abc"

print(f"Display as fixed point {num1:0.2f}")

print(f"Display as integer{num2:4d}")

print(f"Display as string:{string1:s}")

print(f"Display in scientific notation {1/3:e}")

James Tam

Why Bother Specifying The Type

• That is, the previous examples would have ‘worked’ without
using type specifies (e.g. ‘f’ for “floating point”)

• You can read discussions online but here’s one quick reason:
– type checking:

• If information can only be of a certain ‘type’ then the program can flag the
incorrect type as a visible error rather than producing a bug in the program.

• Example: if you only want an ID number to consist only of digits then specify
the type of display as integer, something such as a string will produce an
error.

print(f"{num1:s}") #can’t display a float as a string

print(f"{num2:s}") #can’t display an int as a string

num1 = 1/8
num2 = 123

9/9/2025

Programming introduction 14

James Tam

Example: More Information On Types, How AI Can Be
Legitimately Used (Learning)

Source: Bing Co-pilot

JT’s note: Much like the web, AI

isn’t always correct nor is it

always a ‘good’ source of

information.

James Tam

Formatting Text Output Vs. Changing Variables

• Features such as: F-String for specifying precision and
alignment and format specifiers only affect the information
displayed for functions such as print.

• They DO NOT change the value stored!

• Example:
num = 1/3

print(f"Num's displayed value here={num:3.1}")

print(f"Num's actual stored value={num}")

9/9/2025

Programming introduction 15

James Tam

Functions Can Change Values In Variables

• Recall: variables are changed via an assignment
– Example:

num = 12

print(num) #Num passed to a function not changed.

num = 21 #Updates value stored in num.

• Some functions (such as ‘round’ can return a modified value of
what was passed into it).
– Example:

num = 1/3

round(num,2)

print("Num unchanged",num)

num = round(num,2)

print("Num updated by assignment",num)

James Tam

F-String: Easy Pitfall (To ‘Fall’ Into)

• Tam says: “Small details matter because they can produce
drastic effects, pay attention to syntax (e.g. the ‘Format’
headings in my notes)!”

• This isn’t a “Tam A.R. thing” it’s a property of all programming
languages.

• Example what you if exclude the ‘f’ in an attempt to use F-
String.
num = 1/3

print("{num:3}") #Incorrect: “literal string” between quotes

print(f"{num:3}") #Correct: ‘f’: specifies the use of F-String

9/9/2025

Programming introduction 16

James Tam

Types Of Programming Errors

1. Syntax/translation errors

2. Runtime errors

3. Logic errors

James Tam

1. Syntax/ Translation Errors

• Each language has rules about how statements are to be
structured.

• An English sentence is structured by the grammar of the
English language:
– My cat sleeps the sofa.

• Python statements are structured by the syntax of Python:
5 = num

Grammatically incorrect (FYI: missing the preposition to

introduce the prepositional phrase ‘the sofa’)

Syntactically incorrect: the left hand side of an assignment

statement cannot be a literal (unnamed) constant (or variable

names cannot begin with a number)

9/9/2025

Programming introduction 17

James Tam

1. Some Common Syntax Errors

• Miss-spelling names of keywords
– e.g., ‘primt()’ instead of ‘print()’

• Forgetting to match closing quotes or brackets to opening
quotes or brackets e.g., print("hello)

• Using variables before they’ve been named (allocated in
memory).

• Name of the full example: 10error_syntax.py
print(num)

num = 123

James Tam

1. Syntax Errors: Rules For Specifying Python Instructions

• The rules were introduced in the previous section:

• The python ‘rules’ are specified in the syntax of the language.

9/9/2025

Programming introduction 18

James Tam

2. Runtime Errors

• Occur as a program is executing (running).

• The syntax of the language has not been violated (each
statement follows the rules/syntax).

• During execution a serious error is encountered that causes
the execution (running) of the program to cease.

• A common example of a runtime error is a division by zero
error.
– Another example is a type error e.g. var = "1" + 1

– We will talk about other run time errors later.

“My computer
crashed!”

James Tam

2. Runtime Error1: An Example

• Name of the full example: 11error_runtime.py

num2 = int(input("Type in a number: "))

num3 = int(input("Type in a number: "))

num1 = num2 / num3 # When zero is entered

print(num1)

1 When ‘num3’ contains zero

9/9/2025

Programming introduction 19

James Tam

3. Logic Errors

• The program has no syntax errors.
• The program runs from beginning to end with no runtime

errors.
• But the logic of the program is incorrect (it doesn’t do what it’s

supposed to and may produce an incorrect result).
• Name of the full example: 12error_logic.py

print ("This program will double the number.")

number = int(input("Type in the number to be doubled: "))

doubledIt = number + 2

print("Number: %d, Doubled: %d" %(number,doubledIt))

Software “bugs”

