
Functional decomposition 1

James Tam

Functional Decomposition: Part 1

• Defining new functions, calling functions you
have defined

• Declaring variables that are local to a function
• Scope: local vs. global
• Function specific style requirements (rules of

thumb for good style)

James Tam

Built In Python Functions

•Python comes with many functions that are a built in part of
the language e.g., ‘print()’, ‘input()’
- They either come ‘automatically’ or you can access that

module/library with an import.

•(If a program needs to perform a common task e.g., finding the
absolute value of a number, then you should first check if the
function has already been implemented).

•For a list of all prewritten Python functions.
- https://docs.python.org/3/library/functions.html

https://docs.python.org/3/library/functions.html

Functional decomposition 2

James Tam

Writing Your Own Functions: Why Do It?

•First reason, you have no choice: the code hasn’t been
implemented for this feature yet.

•Example: you can’t just look up the prebuilt functions in
python and have one of them do all the work for one of your
assignments.

James Tam

Writing Your Own Functions: Why Do It?

•Second reason, you need to know this: it’s not only done all
the time in real life but it’s a key component of this course.

•(Exert from the university calendar description):
- “Introduction to problem solving, analysis and design of small-scale computational

systems and implementation using a procedural programming language. ”

- All this means that it is expected that all students who have

successfully finished this course will be able to properly implement a

non-trivial program not only using functional decomposition but also

apply important related concepts such as: parameters, return values

and scope.

•New terminology:
- Function, procedure, method

- For now you can think of them as largely interchangeable although you
will learn the difference between a function and method towards the end
of this course.

•Most languages don’t distinguish procedures from functions.

Functional decomposition 3

James Tam

Examinations

•You have to know the terms ‘function’/’procedure’ (and
eventually ‘method’).

•But you don’t have to memorize the first two reasons (just
covered) for using functional decomposition for the exam.

•For the exam: You do need to know the other reasons (#3 – 7)
that come from functional decomposition that will
immediately follow in these notes.

James Tam

Writing Your Own Functions: Why Do It?

•Third reason, reuse/efficiency: Once the function definition is
complete (and tested reasonably) it can be called (reused)
many times.

def displayInstructions():

print("Displaying instructions")

Main body of code (starting execution point)

displayInstructions()

displayInstructions()

displayInstructions()

•Think about how many times prewritten functions such as
input and print have be used.

Functional decomposition 4

James Tam

Writing Your Own Functions: Why Do It?

• Fourth reason, easier maintenance: (related to the previous
benefit: write once, use many times): when program maintenance
(changes to code) is needed.

• If the same code is written over and over again in different parts of
the program then each location must be changed.

• Implementing that same code in one function requires only changes
to the code in that function.

• This may result in a smaller program with fewer/no redudancies as
well.

def myFunction():
#Code to modify

#My program, no functions
#Code to modify

#Code to modify

#Code to modify

James Tam

Writing Your Own Functions: Why Do It?

•Fifth reason, decoupling of your code:

•New terminology, decoupling: a fancy term for a simple
concept.

• In this case it means you can simply use a function without
worrying about the ‘internal’ details of how it was written.

•You simply need things such as: how to call it, what operations
the function implements, what are it’s return values etc.

•This is the actual code from the randint() function.
- You just have to know how to call it not know all the intimate details of

how every line works.

Functional decomposition 5

James Tam

Writing Your Own Functions: Why Do It?

•More Of The Random Library/Module

1

James Tam

Writing Your Own Functions: Why Do It?

•More Of The Random Library/Module

2

Functional decomposition 6

James Tam

Writing Your Own Functions: Why Do It?

•More Of The Random Library/Module

3

James Tam

Writing Your Own Functions: Why Do It?

•Sixth reason, it simplifies things.
- Increased readability: Allows you to focus on one part of a program at a

time (thus reduced complexity).

- Program design/implementation is easier:
•Sometimes you will have to write a program for a large and/or complex

problem.
•One technique employed in this type of situation is the top-down approach to

design (coming later in the functional decomposition notes)

o The main advantage is that it reduces the complexity of the problem
because you only have to work on it a portion at a time.

Functional decomposition goes hand-in-hand

with good programming style and proper

documentation.

• If you apply good style introduced in this

section (e.g. each function implements a

single well-defined task – more on this later)

it helps make it clear which function you

should be looking at when you want to use

pre-written code.

• Proper documentation indicates how a

function should and should not be used.

Java ‘String’

Example function (you could write)

divide(float,float)
Parameters: two floating point numbers
Returns: a float (quotient of the numbers)
Assumptions: 2nd parameter not zero.

Functional decomposition 7

James Tam

Writing Your Own Functions: Why Do It?

•Seventh reason: testing and debugging is easier.
- The code is confined to just one function (the one being tested) so fewer

cases are required, complexity is reduced.

- This of course makes debugging easier.
•A smaller amount of code needs to be debugged (one function instead of the

whole program – if you avoid bad style practices such as declaring variables
global with write access) to trace through and fix during a particular session.

James Tam

Know This Summary: Benefits of Functional Decomposition

• Allows for code reuse.

• Makes the program easier to maintain.

• Decouples your code (just use it without knowing inner details).

• Simplifies the design, implementation and tracing/reading of code.

• Testing and debugging is easier.

Functional decomposition 8

James Tam

Simplying A Problem With Functional
Decomposition

Main tasks to

be fulfilled by

the program

Important

subtask #1

Important

subtask #2

Important

subtask #3

Function #1

…Etc.

Function #2 Function #3 …Etc.

Similar to creating a document: don’t start coding until you are done decomposing the structure.

James Tam

Things Needed In Order To Use Functions

•Function call (you’ve done this before)
- Actually running (executing) the function.

- You have already done this second part many times because up to this
point you have been using functions that have already been defined by
someone else e.g., print(), input()

•Function definition (this is what you will learn)
- Instructions that indicate what the function will do when it runs.

- Before this section: you have used built-in python functions (with their
instructions already written by someone else).

- In this section: you will learn how to write the instructions inside a
function body which execute when that function runs.

Functional decomposition 9

James Tam

Functions (Basic Case: No parameters/Inputs)

Function call

Function definition

You’ve already called

prebuilt functions and

passed no arguments e.g.
print(), input()

James Tam

Defining A Function

•Format:
def <function name>1():

body2

•Example:
def displayInstructions():

print ("Displaying instructions on how to use the

program")

•You don’t need to define prebuilt functions because some else has
defined the code for you.

1 Functions should be named according to the rules for naming variables (all lower case alphabetic, separate

multiple words via camel case or by using an underscore).

2 Body = the instruction or group of instructions that execute when the function executes (when called).

The rule in Python for specifying the body is to use indentation.

Functional decomposition 10

James Tam

Calling A Function

•Format:

<function name>()

•Example:

displayInstructions()

•As you mentioned you have already learned how to call a
prewritten function e.g. print(), int(), input(),
randint(1,6) etc.

James Tam

Quick Recap: Starting Execution Point

•The program starts at the first executable instruction that is
not indented.

•In the case of your programs thus far all statement have been
un-indented (save loops/branches) so it’s just the first
statement that is the starting execution point.

•But note that the body of functions MUST be indented in
Python.

HUMAN_CAT_AGE_RATIO = 7
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO
…

Functional decomposition 11

James Tam

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

•Name of the example program: 1firstExampleFunction.py
- Learning objective:

def displayInstructions():

print("Displaying instructions")

Main body of code (starting execution point, not indented)

displayInstructions()

print("End of program")

James Tam

•Name of the example program: 1firstExampleFunction.py

def displayInstructions():

print("Displaying instructions")

Main body of code (starting execution point)

displayInstructions()

print("End of program")

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

(Something new

in this section):

Function

definition

(You’ve done

this before):

Function call

Functional decomposition 12

James Tam

Defining The Main Body Of Code As A Function

• Good style: unless it’s mandatory, all instructions must be inside a function.

• Rather than defining instructions outside of a function the main starting
execution point can also be defined explicitly as a function.

• (The previous program rewritten to include an explicit start function)
Example program: 2firstExampleFunctionV2.py
- Learning objective: enclosing the start of the program inside a function

def displayInstructions():

print ("Displaying instructions")

def start():
displayInstructions()
print("End of program")

• Important: If you explicitly define the starting function then do not forgot
to explicitly call it!

start ()

Don’t forget to start your program!

Program starts at the first executable

un-indented instruction

James Tam

Stylistic Note

•By convention the starting function is frequently named
‘main()’ or in my case ‘start()’.
def main():

•OR
def start():

•Another convention is to define and call this function at the
very end of your program.

•Both of these things are is done so the reader can quickly find
the beginning execution point.

Functional decomposition 13

James Tam

Creating Your Variables: Inside Functions

•Before this section of notes: all statements (including the
creation of a variables) occur outside of a function

•Now that you have learned how to define functions, ALL your
variables must be created with the body of a function.

•Constants can still be created outside of a function (more on
this later).

HUMAN_CAT_AGE_RATIO = 7
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO
…

HUMAN_CAT_AGE_RATIO = 7

def getInformation():
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO

‘Outside’: OK for
constants only

Inside function
body: all variables
(e.g. ‘age’,
‘catAge’) must be
here

James Tam

Local Variables

•Characteristics
- Locals only get allocated (created in memory) when the function is called.

- Locals get de-allocated (unavailable in memory) when the function ends.

•Benefits (why create them this way)
- 1st: more efficient use of memory

- 2nd: minimize the occurrence of side effects of global variables
•This is the main reason why it’s regarded as bad style in actual practice.
•But details are more complex so the explanation will come later.

- 3rd: pedagogical (creating variables locally forces you to apply important
programming concepts such as parameter passing, function return values
and scope).

Functional decomposition 14

James Tam

Scope: Visually Showing When Memory Locations Can
Be Accessed

• The scope of an
identifier (variable,
constant) is where it
may be accessed and
used.

• In Python1:

– An identifier comes
into scope (becomes
visible to the
program and can be
used) after it has
been declared.

– An identifier goes out
of scope (no longer
visible so it can no
longer be used) at
the end of the
indented block
where the identifier
has been declared.

1 The concept of scoping (limited visibility) applies to all programming languages. The rules for

determining when identifiers come into and go out of scope will vary with a particular language.

RATIO = 7
def getInformation():

age = input("Age: ")

catAge = age * RATIO

getInformation()

Scope of age
(allocated)

Scope of
catAge
(allocated)

End of function (age,

catAge go out of

scope/deallocatecd):

End of program (RATIO goes out of

scope/deallocated):

Age, catAge is

not in scope

outside the

function

Age, catAge
is not in scope

outside the

function

Scope of
RATIO

(allocated)

James Tam

Working With Local Variables: Putting It All
Together

•Name of the example program: 3secondExampleFunction.py
- Learning objective: creating/defining variables that only exist while a function runs

(local to that function).

def fun():

num1 = 1

num2 = 2

print(num1, " ", num2)

start function

fun()

Variables that

are local to

function ‘fun’
Scope of num1

Scope of num2

Functional decomposition 15

James Tam

Variables Vs. Named Constants

•As you have already been taught:
- Variables can change as the programs run while named constants don’t

change after they’ve been set to the initial value.

- To visually distinguish the two variables use lower case while constants
are capitalized.

•Your program should consistently distinguish the two!
- The following is only a ‘constant’ in name only and is treated like a

variable.
PI = 3.14
radius = 10
area = PI * (radius ** 2)

PI = 3.1 #Do not change the value in a constant!

James Tam

Good Style: Functions

1. Each function should have one well defined task. If it doesn’t
then this may be a sign that the function should be
decomposed into multiple sub-functions.
a) Clear function: A function that squares a number.
b) Ambiguous function: A function that calculates the square and the

cube of a number.
o Writing a function that is too specific makes it less useful (in this case what

if we wanted to perform one operation but not the other).

• Also functions that perform multiple tasks can be harder to test.

Functional decomposition 16

James Tam

Good Style: Functions (2)

2. (Related to the previous point). Functions should have a self-
descriptive action-oriented name (verb/action phrase or
take the form of a question – the latter for functions that
check if something is true): the name of the function should
provide a clear indication to the reader what task is
performed by the function.

a) Good: drawShape(), toUpper()

isNum(), isUpper() # Boolean functions: Asks a question

a) Bad: doIt(), go(), a()

James Tam

Good Style: Functions (2)

3. Try to avoid writing functions that are longer than one
screen in length.
a) Tracing functions that span multiple screens is more difficult.
b) See each assignment description for what constitutes “one screen”.

4. The conventions for naming variables should also be applied
in the naming of functions.
a) Lower case characters only.

b) With functions that are named using multiple words capitalize the
first letter of each word except the first (so-called “camel case”) -
most common approach or use the underscore (less common).
Example: toUpper()

(Python doesn’t follow this convention but it’s an exception).

Functional decomposition 17

James Tam

After This Section You Should Now Know

•How and why the top down approach can be used to
decompose problems
- What is procedural programming

•How to write the definition for a function

•How to write a function call

•How and why to declare variables locally

•Function specific style requirements

James Tam

Copyright Notification

•Unless otherwise indicated, all images in this presentation
were provided courtesy of James Tam.

slide 34

