Composites, Tuples: Part 4

A composite type similar to a list but the elements
store data that should not change.

James Tam

Terminology: Mutable, Constant, Immutable,

12
17

num
num

* (New) Mutable types:
- The original memory location can change.
- You can visualize simple types as being mutable. num

e Constants:
- Memory location shouldn’t change (Python): may produce a logic error if
modified e.g. GST_RATE = 0.05

- Memory location syntactically cannot change (C++, Java): produces a
syntax error (violates the syntax or rule that constants cannot change)

¢ (New) Immutable types:
- The original memory location won’t change

- Changes to a variable of a pre-existing immutable type creates a new
location in memory. There are now two locations.

Memory

“Tam” leak

"Mat"

COOL_DUDE
COOL_DUDE

COOL_DUDE "Tam"

"Mat"

James Tam

Branching and making decisions

Lists Are Mutable

The original list can
L4 Example change (modifying an

. _ element) making this type
aList = [1,2,il/””,,,——,,,,,mumme
aList[9@] = 10

print(aList) # [10,2,3]

James Tam

Strings Are Immutable

eEven though it may look a string can change they actually
cannot be edited (original memory location cannot change).

*Name of the example program: 1immutableStrings.py

- Learning: strings are immutable:
eUsing the assighment operator in conjunction with the name of the whole string
produces a new string (string variable refers to a new string not the original string).
e Attempting to modify a string produces an error.

s1 = "hi"
print(s1)
sl = "bye" u\lew string created
print(s1)
sl[e] = "G" # Error
bye
Cannot modify the
characters in a Traceback (most recent call last):

string (immutable) File "12immutableStrings.py", line 7, in <module>

s1[
TypeError: 'str' object does not support item assignment James Tam

Branching and making decisions

New Term: Memory Leak

¢ (Paraphrased from different sources): A memory leak occurs
when memory that has been allocated (e.g. during the
creation of a: local identifier, list, object etc.) can no longer be
accessed (and deallocated).

e Result: the consumption in memory may (depending upon the
language) result in a run-time error or a general slow down of
the device running the program.

e Example of a possible memory leak:

astrl = “hi”
astrl = “bye” #String hi can become a memory leak

James Tam

Tuples

eMuch like a list:

- A tuple is a composite type whose elements can consist of any other type.
eHeterogeneous: Elements do not have to be of the same type.

- May contains values of different types.
- Elements of a Tuple have an order and accessed via the index.

eTuples support many of the same operators as lists such as indexing but not
methods that modify it e.g. append

eLike lists each element of a tuple is not confined to characters (string of
length 1).

eBut unlike a list a tuple is immutable.
- It stores data that should not change.
- Elements cannot change, length cannot change.
- ‘Changes’ creates a new tuple.

- In that way it’s somewhat analogous to a named constant (e.g. PI = 3.14) but
unlike this named constant changes can only produce a new tuple.

James Tam

Branching and making decisions

Creating Tuples

eFormat:
tuple _name = (value!, value?...value")

eExample:
#Empty tuple created, address in ‘tup’
tup = ()

#iNew tuple created, address of new tuple in ‘tup’
tup = (1,2,"fo0",0.3)

James Tam

A Small Example Using Tuples

*Name of the online example: 2simpleTupleExample.py
- Learning: accessing an entire tuple, accessing individual elements, tuples are an immutable
type.

tup = (l’M
print(tup

print(tup[2]))
Error (trying to change an immutable):
tup[2] = "bar"* “TypeError: object does not support item assignment”

James Tam

Branching and making decisions

Function Return Values

eAlthough it appears that functions in Python can return multiple values they
are in fact consistent with how functions are defined in other programming
languages.

eFunctions can either return zero or exactly one value only.

*Specifying the return value with brackets merely returns one tuple back to
the caller (to be more specific it is the address of a tuple)
def fun():
return(1,2,3) < Returns: Atuple with three elements

def fun(num):
if (num > 0):
print("pos ")
return()
elif (num < 0):
print("neg")
return()

Nothing is returned back to the caller (empty
tuple)

James Tam

Functions Changing Multiple Iltems

eBecause functions only return 0 or 1 items (Python returns one
composite) the mechanism of passing by reference (covered
earlier in this section) is an important concept.

- What if more than one change must be communicated back to the caller
(only one entity can be returned).
- Multiple changes to parameters (>1) must be passed by reference.

James Tam

Branching and making decisions

Proving That Python Functions Return A Tuple

¢ Name of the online example:
3functionReturnValues.py

- Learning:
e Demonstrating functions return tuples
e |terating a tuple using loops: for, while.

def fun():
tupleInFun = (1.5,2,7,0.3)
return(tupleInFun)

def start():
tupleInStart = fun()
print("Iterating using a for-loop in conjunction with
the 'in' operator")
for element in tuplelnStart:
print("%.1f" %(element))

James Tam

Proving That Python Functions Return A Tuple (2)

print()
i=290
numElements = len(tupleInStart)
print("Iterating using a while-loop in conjunction with" \
+" the len() function")
while(i < numElements):
print("%.1f" %(tupleInStart[i]))
i=1i+1

James Tam

Branching and making decisions

Packing A Tuple

¢ Name of the full online example:
4packing_unpacking_ tuples.py
- New terminology, packing a tuple: python encounters multiple values
separated by commas it will create a new tuple to store the separate

values into one composite.
e Example:
tuple = 1,2,3
print(type(tuple))
- New terminology, unpacking a tuple: a tuple has been created and a
program instruction stores each element of the tuple into individual

variables.
e Example:
def fun():
aTuple = (1,2.0,False)
return(aTuple)

numl,num2,num3 = fun()
print(type(numl),type(num2),type(num3))
¢ Note: if you do this make sure that the number of individual variables exactly
matches the number of elements in the tuple or the unpacking will fail.

James Tam

Singletons And Tuples

¢ Sometimes a program must only have one instance of an
entity e.g. the “print daemon” that manages print jobs on a
computer or server.

¢ The Singleton ‘pattern’ can be applied to ensure there is no
more than one instance.

¢ One ‘approach’ for ensuring Singleton pattern in python:
- General format:
e singletonVariable = {<element>,}
- Example:
e #Element stores all details of print jobs on the computer
e daemon = {printingDetails,}

James Tam

Branching and making decisions

Tuple Operations (Table: Zhao/Hudson)

Index
Slicing

Concatentation

Length

Repetition

Membership

Iteration

Location (index

of)

Access single element
Make a copy of part of a tuple

Combines elements of 2
tuples into a new, larger tuple

Determining the number of
elements

Repeat ‘n’ times the elements
of one tuple (with the order
retained) into a new tuple

Determine if item is an
elementin a tuple

Iterate (step through) each
element in a tuple

Returns index of the 1st
occurrence of an element, run
time error if not in list

* Name of the full online example: 51ist_operations

aTuple[0@]
aTuple[start:end]
bigger = tuplel + tuple2

len(aTuple)

aTuple*3

if item in aTuple:

for element in aTuple
print(element)

aTuple.index(True)

After This Section You Should Now Know

eCommon operations for tuples.

*What is a tuple, common operations on tuples such as
creation, accessing elements, displaying a tuple or elements.

*The actual value returned from a function.
*New terminology: packing/unpacking tuples.

James Tam

Branching and making decisions

Copyright Notification

¢ Unless otherwise indicated, all images in this presentation
were provided courtesy of James Tam.

James Tam

Branching and making decisions

