
Branching and making decisions 1

James Tam

Composites, Tuples: Part 4

A composite type similar to a list but the elements
store data that should not change.

James Tam

Terminology: Mutable, Constant, Immutable,

• (New) Mutable types:
- The original memory location can change.

- You can visualize simple types as being mutable.

• Constants:
- Memory location shouldn’t change (Python): may produce a logic error if

modified e.g. GST_RATE = 0.05

- Memory location syntactically cannot change (C++, Java): produces a
syntax error (violates the syntax or rule that constants cannot change)

• (New) Immutable types:
- The original memory location won’t change

- Changes to a variable of a pre-existing immutable type creates a new
location in memory. There are now two locations.

num 1217

num = 12
num = 17

COOL_DUDE
COOL_DUDE = "Tam"
COOL_DUDE = "Mat"

"Mat"

"Tam"

Memory

leak

Branching and making decisions 2

James Tam

Lists Are Mutable

• Example
aList = [1,2,3]

aList[0] = 10

print(aList) # [10,2,3]

The original list can

change (modifying an

element) making this type

mutable

James Tam

Strings Are Immutable

•Even though it may look a string can change they actually
cannot be edited (original memory location cannot change).

•Name of the example program: 1immutableStrings.py
- Learning: strings are immutable:

•Using the assignment operator in conjunction with the name of the whole string
produces a new string (string variable refers to a new string not the original string).

•Attempting to modify a string produces an error.

s1 = "hi"

print(s1)

s1 = "bye" # New string created

print(s1)

s1[0] = "G" # Error

Cannot modify the

characters in a

string (immutable)

Branching and making decisions 3

James Tam

New Term: Memory Leak

• (Paraphrased from different sources): A memory leak occurs
when memory that has been allocated (e.g. during the
creation of a: local identifier, list, object etc.) can no longer be
accessed (and deallocated).

• Result: the consumption in memory may (depending upon the
language) result in a run-time error or a general slow down of
the device running the program.

• Example of a possible memory leak:
aStr1 = “hi”
aStr1 = “bye” #String hi can become a memory leak

James Tam

Tuples

•Much like a list:
- A tuple is a composite type whose elements can consist of any other type.

•Heterogeneous: Elements do not have to be of the same type.

- May contains values of different types.

- Elements of a Tuple have an order and accessed via the index.

•Tuples support many of the same operators as lists such as indexing but not
methods that modify it e.g. append

•Like lists each element of a tuple is not confined to characters (string of
length 1).

•But unlike a list a tuple is immutable.
- It stores data that should not change.

- Elements cannot change, length cannot change.

- ‘Changes’ creates a new tuple.

- In that way it’s somewhat analogous to a named constant (e.g. PI = 3.14) but
unlike this named constant changes can only produce a new tuple.

Branching and making decisions 4

James Tam

Creating Tuples

•Format:
tuple_name = (value1, value2...valuen)

•Example:
#Empty tuple created, address in ‘tup’

tup = ()

#New tuple created, address of new tuple in ‘tup’

tup = (1,2,"foo",0.3)

James Tam

A Small Example Using Tuples

•Name of the online example: 2simpleTupleExample.py
- Learning: accessing an entire tuple, accessing individual elements, tuples are an immutable

type.

tup = (1,2,"foo",0.3)

print(tup)

print(tup[2])

tup[2] = "bar"
Error (trying to change an immutable):

“TypeError: object does not support item assignment”

Branching and making decisions 5

James Tam

•Although it appears that functions in Python can return multiple values they
are in fact consistent with how functions are defined in other programming
languages.

•Functions can either return zero or exactly one value only.

•Specifying the return value with brackets merely returns one tuple back to
the caller (to be more specific it is the address of a tuple)
def fun():

return(1,2,3)

def fun(num):

if (num > 0):

print("pos ")

return()

elif (num < 0):

print("neg")

return()

Function Return Values

Returns: A tuple with three elements

Nothing is returned back to the caller (empty

tuple)

James Tam

Functions Changing Multiple Items

•Because functions only return 0 or 1 items (Python returns one
composite) the mechanism of passing by reference (covered
earlier in this section) is an important concept.
- What if more than one change must be communicated back to the caller

(only one entity can be returned).

- Multiple changes to parameters (>1) must be passed by reference.

Branching and making decisions 6

James Tam

Proving That Python Functions Return A Tuple

• Name of the online example:
3functionReturnValues.py
- Learning:

• Demonstrating functions return tuples
• Iterating a tuple using loops: for, while.

def fun():

tupleInFun = (1.5,2,7,0.3)

return(tupleInFun)

def start():

tupleInStart = fun()

print("Iterating using a for-loop in conjunction with

the 'in' operator")

for element in tupleInStart:

print("%.1f" %(element))

James Tam

Proving That Python Functions Return A Tuple (2)

print()

i = 0

numElements = len(tupleInStart)

print("Iterating using a while-loop in conjunction with" \

+" the len() function")

while(i < numElements):

print("%.1f" %(tupleInStart[i]))

i = i + 1

Branching and making decisions 7

James Tam

Packing A Tuple

• Name of the full online example:
4packing_unpacking_tuples.py
- New terminology, packing a tuple: python encounters multiple values

separated by commas it will create a new tuple to store the separate
values into one composite.
• Example:

tuple = 1,2,3

print(type(tuple))

- New terminology, unpacking a tuple: a tuple has been created and a
program instruction stores each element of the tuple into individual
variables.
• Example:

def fun():

aTuple = (1,2.0,False)

return(aTuple)

num1,num2,num3 = fun()

print(type(num1),type(num2),type(num3))

• Note: if you do this make sure that the number of individual variables exactly
matches the number of elements in the tuple or the unpacking will fail.

James Tam

Singletons And Tuples

• Sometimes a program must only have one instance of an
entity e.g. the “print daemon” that manages print jobs on a
computer or server.

• The Singleton ‘pattern’ can be applied to ensure there is no
more than one instance.

• One ‘approach’ for ensuring Singleton pattern in python:
- General format:
• singletonVariable = {<element>,}

- Example:
• #Element stores all details of print jobs on the computer
• daemon = {printingDetails,}

Branching and making decisions 8

James Tam

• Name of the full online example: 5list_operations

Tuple Operations (Table: Zhao/Hudson)

Operation Description Example

Index Access single element aTuple[0]

Slicing Make a copy of part of a tuple aTuple[start:end]

Concatentation Combines elements of 2

tuples into a new, larger tuple

bigger = tuple1 + tuple2

Length Determining the number of

elements

len(aTuple)

Repetition Repeat ‘n’ times the elements

of one tuple (with the order

retained) into a new tuple

aTuple*3

Membership Determine if item is an

element in a tuple

if item in aTuple:

Iteration Iterate (step through) each

element in a tuple

for element in aTuple
print(element)

Location (index

of)

Returns index of the 1st

occurrence of an element, run

time error if not in list

aTuple.index(True)

James Tam

After This Section You Should Now Know

•What is a tuple, common operations on tuples such as
creation, accessing elements, displaying a tuple or elements.

•The actual value returned from a function.

•New terminology: packing/unpacking tuples.

•Common operations for tuples.

Branching and making decisions 9

James Tam

Copyright Notification

• Unless otherwise indicated, all images in this presentation
were provided courtesy of James Tam.

slide 17

