Composites: Sets

Composites, Sets: Part 5

A composite type that is a programming
implementation of a mathematical set.

James Tam

Sets: An Overview

When to use:
- You need a composite where elements are unique (not duplicates).
- Python: adding an element that already exists will fail (no error)

Another composite where the data can be accessed in different ways:
- individual elements,
- the entire collective entity { }

Mutable like a list: elements can change and elements are heterogeneous
(don’t have to be the same type).

Associated operations are different from a list (likely because it’s not
ordered) e.g. indexing, slicing, concatenation, repetition operations are
not available.

Duplicates cannot be added.
- Attempting to do this via the ‘add’ method will not add the duplicate element.

- In this way it provides an automatic form of error prevention (should the data
being modeled not allow for duplicates e.g. students in a university).
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Set Operations

¢ Name of the full online example: 2set_operations.py

¢ Operations covered in the example: creating a set, iterating,
adding, discarding, remove, popping, updating,
iterating/creating a set dynamically, membership

¢ Invalid set operations (not operations in mathematical sets):
concatenation, repetition.

James Tam

Creating A Set
¢ Format:
<name> = {<elementl>, <element2>,... <element n>,}}
e Example:

cpsc231L01Set = {"Humid","Kin","Wai"}

Note: this is not the same syntax as creating a dictionary!

- Recall: This latter type has a key and pair for each element.
cpsc231L@1Dictionary = {1:"Humid",
2:“Kin",
3:"Wai"}

Creating an empty set:

- A function must be called: set()
aSet = set() #aSet = {} Creates a dictionary not a set

<class '"dict'>

Note: the later examples occur after a set has already been
created.
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Adding New Elements

¢ Creating elements one at a time.
setl = set()
setl.add("1")
setl.add(True)
setl.add(2)
setl.add(3)
setl.add(3) #Duplicate not added.

True 2 3 1

1 2 3 True

James Tam

Iterating Through A Set

for element in setl:
print(element,end=" ")
3 Trus 2 1 Recall:itis not ordered

setl = set()
setl.add("1")
setl.add(True
setl.add(2)
setl.add(3)
setl.add(3)
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Discarding (A Single) Specified Element

set2 = {"Red","Blue","Green"}
set2.discard("Red")

- Nothing is discarded if the element is not already in the set
set2.discard("Orchre")

{'Blu=', 'Green', 'Red'}
{'Blue', 'Green'}

Removing (A Single) Specified Element

set2 = {"Red","Blue","Green"}
set2.remove("Red")

- Runtime error results if the element is not already in the set
set2.remove("Orcher jelly")

KeyError: e

m
=1




Popping (Discard) An Element (Randomly
Determined)

set2 = {"Red","Blue","Green"}
set2.pop() #Run multiple times and different element removed

Press enter to see an element popped out of the set

{"Red"', '"Green'}

Press enter to ses an element popped out of the set

{'Blu=", 'Red'}

Press enter to see an element popped out of the set

{*Red', 'Blue'}

James Tam

Discarding (A Single) Element

set2 = {"Red","Blue","Green"}
set2.discard("Orchre")

- Nothing is discarded if the element is not already in the set

James Tam
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Checking Length

set2 = {"Red","Blue","Green"}
len(set2)
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Updating A Set (Adding One Set To Another)

setl = {"Red","Blue","Green"}

set2 = {"Red","Pink","Purple"}

print(setl,set2) {'Green', 'Red', 'Blue'} {'Purple', 'Red', 'Pink'}
setl.update(set2)

- Duplicates won’t be added.
- The second set (the method argument, in this case set2) will be
unchanged.

print(setl,set2)

{'Green', 'Red', 'Pink', 'Purple', 'Blue'} {'Purple', 'Red', 'Pink'}
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Iterating And Dynamically Creating New Elements

set3 = set()
for i in range(0,4,1):
set3.add(i)

{0, 1, 2, 3}
I
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Checking For Membership (Using The ‘In’ Operator)

set3 = {1)213} {1, 2z, 3}
if 1 in set3: 1 in set3
print("1 in set3")
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Terminology: Subset Vs. Proper Subset

[ ] A pr‘oper‘ Subset Cannot be Is setl a proper subset of set2?
{1y {1}
identical to Superset. setl NOT a proper subset of set2

e Setl = {1}, Set2 = {1}
- Setl is a subset of Set2

- Setl is NOT a proper subset of Set2
because they contain the same

values.
. Setl — {1}, Se'tZ — ii_siif ;_prcper subset of set2?
{1’ 2} setl a proper subset of setz

- Setl is a subset of Set2

- Setl IS a proper subset of Set2
because the values they contain are
not identical.

Why Use Python Sets?

¢ When mathematical set operations are needed e.g. checking
if one set is a superset of another.
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Set Operations

¢ Name of the full online example: 3set_comparisons.py

e Comparisons covered in the example: intersection, union,
symmetric difference, complement difference, subset,
superset, equality, inequality, proper subset, proper superset,
disjoint sets.

Terminology: Superset Vs. Proper Superset

e A proper superset cannot be
identical to subset.

[ ) Se‘tl = {1} Se‘tz = {1} Iz setl a proper superset of set2?
. g {1} {1}
- Setlisa superset of Set2 setl NOT a proper superset of setl

- Setl is NOT a proper subset of Set2
because they contain the same

values.
L4 Setl = {1, 2}_, SetZ = Is setl a proper superset of set2?
{1, 2} {1}
{1} setl a proper superset of setc2

- Setl is a subset of Set2

- Setl IS a proper subset of Set2
because the values they contain are
not identical.




Other Set Comparisions

e Equality
if(setl == set2):

* Inequality (not equal)
if(setl != set2):

e Disjoint (do not share an element)

Intersection (A B)

setl = {1}

set2 = {1,2}

set3 = setl & set2
U

Image: Richard Zhao, Jonathan Hudson

Intersection of setl,
{1y {1, 2}
{1}

set

Composites: Sets
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Union (A U B)

setl = {1} Union of setl, setd
set2 = {1,2} {i} e 2
set3 = setl | set2 1, 2}

Image: Richard Zhao, Jonathan Hudson
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Symmetric Difference (A A B)

The symmetric difference of Setl and Set2 is the set of elements which are in
either of Setl and Set2, but not in their intersection.

setl = {1,2,3} Symmetric difference of secl, set
set2 = {3,4} {1, 2, 3 {3, 4}
set3 = setl ~ set2 i1, 2, 4}

Image: Richard Zhao, Jonathan Hudson

James Tam
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Complement Difference (B\ A
AN B)

Set subtraction

setl = {112“3} I?il;f.p;?m:?t{csij:fzfrence of setl, setZ
set2 = {3,4} {1, 2}

set3 = setl - set2

U

Image: Richard Zhao, Jonathan Hudson
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Subset

setl = {1}
set2 = {1,2}
if(setl.issubset(setz)): Is setl a subset of ser2?
OR {1y {1, 2}
. issubset: setl is a subset of set2
1f(set1 <= set2): <=: setl is a subset of set2
James Tam
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setl = {1}

set2 = {1,2}

if(setl.issuper‘set(setZ)): Is setl a superset of set2?
OR {1y {1, 2}

if(setl >= set2):

Superset

issuperset: setl is HNOT a superset of set2
»=: setl is NOT a superset of set2

James Tam

setl
set2

{1}
{1,2}

if(setl == set2):

Equality

Inequality test: Is setl NOT eqgual to set2?
{1y {1, 2}
setl is not egqual to set2

James Tam
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Inequality

setl = {1}
set2 = {1,2}
if(setl != set2): Equality test: Is setl equal to set2?

{1y {1, 2}

setl is NOT egual to set2

James Tam
Proper Subset

setl = {1}
set2 = {1,2}

if((setl <= set2) and (setl != set2)):
OR

if(setl < set2):

Is setl a proper subset of set2?
{1} {1, 2}

setl a proper subkset of set2

setl = {1}
set2 = {1}

Is setl a proper subset of set2?
{1} {1}
setl NOT a proper subset of set2

James Tam
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Proper Superset

setl
set2

{1}
{1,2}

if((setl >= set2) and (setl != set2)):
OR

if(setl > set2):

Is setl a proper superset of sec2?
{1, 2} {1}

setl a proper superset of setc2

setl = {1}
set2 = {1}

Is setl a proper superset of sec2?
{1} {1}
setl is NOT a proper superset of setz

James Tam

Disjoint Sets (Do Not Share Elements)

setl
set2

{1,2}
{2}

if(setl.isdisjoint(set2)):

Is setl disjoint (don't share elements) from set2?
{1, 2} {2}
The sets DO share slements

setl = {1,2}
set2 = {3}

Is setl disjoint (does share slements) from set2?
{1, 2} {3}

The sets do NOT share elements

James Tam
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Review Of The Composites

--

Method of numpy .array ()

creation or np.array()

Can be No Yes No Yes Yes Yes
heterogeneous?

Ordered and Yes Yes Yes No Yes No
index able?

Mutable® No Yes Yes Yes No Yes
Duplicates Yes Yes Yes Keys=no, Yes No
allowed? values=yes

- The simple types covered thus far (int, float, bool) are all immutable.

- The final composite type (classes) is significantly different so it’s covered
separately (introduced at the end of the term and covered in depth in
the next course).
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After This Section You Should Now Know

eSet operations: creating a set, iterating, adding, discarding,
remove, popping, updating, checking for length,
iterating/creating a set dynamically, membership

eOperations from mathematical sets implemented in python:
intersection, union, symmetric difference, complement
difference, subset, superset, equality, inequality, proper
subset, proper superset, disjoint sets.

eDifferences between the composite types covered thus far:
-How to create (distinguish) between strings, lists, dictionaries, tuples,
sets and arrays.
- Which ones are mutable and which ones are immutable (you should
know this for non-composites as well).
- Which types are ordinal (elements have an ordered) and which ones can
be indexed.
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After This Section You Should Now Know (2)

e Differences between the composite types covered thus far

(continued):
- Which ones allow for duplicate elements.
- Which ones can be heterogeneous (elements don’t have to all be of the

same type).

Copyright Notification

¢ Unless otherwise indicated, all images in this presentation
were provided courtesy of James Tam.
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