
Composites: Sets 1

James Tam

Composites, Sets: Part 5

A composite type that is a programming
implementation of a mathematical set.

James Tam

Sets: An Overview

• When to use:
- You need a composite where elements are unique (not duplicates).

- Python: adding an element that already exists will fail (no error)

• Another composite where the data can be accessed in different ways:
- individual elements,

- the entire collective entity { }

• Mutable like a list: elements can change and elements are heterogeneous
(don’t have to be the same type).

• Associated operations are different from a list (likely because it’s not
ordered) e.g. indexing, slicing, concatenation, repetition operations are
not available.

• Duplicates cannot be added.
- Attempting to do this via the ‘add’ method will not add the duplicate element.

- In this way it provides an automatic form of error prevention (should the data
being modeled not allow for duplicates e.g. students in a university).

Composites: Sets 2

James Tam

Set Operations

• Name of the full online example: 2set_operations.py

• Operations covered in the example: creating a set, iterating,
adding, discarding, remove, popping, updating,
iterating/creating a set dynamically, membership

• Invalid set operations (not operations in mathematical sets):
concatenation, repetition.

James Tam

Creating A Set

• Format:
<name> = {<element1>, <element2>,... <element n>,}}

• Example:
cpsc231L01Set = {"Humid","Kin","Wai"}

• Note: this is not the same syntax as creating a dictionary!
- Recall: This latter type has a key and pair for each element.
cpsc231L01Dictionary = {1:"Humid",

2:“Kin",
3:"Wai"}

• Creating an empty set:
- A function must be called: set()
aSet = set() #aSet = {} Creates a dictionary not a set

Note: the later examples occur after a set has already been
created.

Composites: Sets 3

James Tam

Adding New Elements

• Creating elements one at a time.
set1 = set()
set1.add("1")
set1.add(True)
set1.add(2)
set1.add(3)
set1.add(3) #Duplicate not added.

James Tam

Iterating Through A Set

for element in set1:
print(element,end=" ")

Recall: it is not ordered

Composites: Sets 4

James Tam

Discarding (A Single) Specified Element

set2 = {"Red","Blue","Green"}
set2.discard("Red")

- Nothing is discarded if the element is not already in the set
set2.discard("Orchre")

James Tam

Removing (A Single) Specified Element

set2 = {"Red","Blue","Green"}
set2.remove("Red")

- Runtime error results if the element is not already in the set
set2.remove("Orcher jelly")

Composites: Sets 5

James Tam

Popping (Discard) An Element (Randomly
Determined)

set2 = {"Red","Blue","Green"}
set2.pop() #Run multiple times and different element removed

James Tam

Discarding (A Single) Element

set2 = {"Red","Blue","Green"}
set2.discard("Orchre")

- Nothing is discarded if the element is not already in the set

Composites: Sets 6

James Tam

Checking Length

set2 = {"Red","Blue","Green"}
len(set2)

James Tam

Updating A Set (Adding One Set To Another)

set1 = {"Red","Blue","Green"}
set2 = {"Red","Pink","Purple"}
print(set1,set2)
set1.update(set2)

- Duplicates won’t be added.

- The second set (the method argument, in this case set2) will be
unchanged.

print(set1,set2)

X

Composites: Sets 7

James Tam

Iterating And Dynamically Creating New Elements

set3 = set()
for i in range(0,4,1):

set3.add(i)

James Tam

Checking For Membership (Using The ‘In’ Operator)

set3 = {1,2,3}
if 1 in set3:

print("1 in set3")

Composites: Sets 8

James Tam

Terminology: Subset Vs. Proper Subset

• A proper subset cannot be
identical to superset.

• Set1 = {1}, Set2 = {1}
- Set1 is a subset of Set2

- Set1 is NOT a proper subset of Set2
because they contain the same
values.

• Set1 = {1}, Set2 =
{1,2}
- Set1 is a subset of Set2

- Set1 IS a proper subset of Set2
because the values they contain are
not identical.

James Tam

Why Use Python Sets?

• When mathematical set operations are needed e.g. checking
if one set is a superset of another.

Composites: Sets 9

James Tam

Set Operations

• Name of the full online example: 3set_comparisons.py

• Comparisons covered in the example: intersection, union,
symmetric difference, complement difference, subset,
superset, equality, inequality, proper subset, proper superset,
disjoint sets.

James Tam

Terminology: Superset Vs. Proper Superset

• A proper superset cannot be
identical to subset.

• Set1 = {1}, Set2 = {1}
- Set1 is a superset of Set2

- Set1 is NOT a proper subset of Set2
because they contain the same
values.

• Set1 = {1,2}, Set2 =
{1}
- Set1 is a subset of Set2

- Set1 IS a proper subset of Set2
because the values they contain are
not identical.

Composites: Sets 10

James Tam

Other Set Comparisions

• Equality
if(set1 == set2):

• Inequality (not equal)
if(set1 != set2):

• Disjoint (do not share an element)

James Tam

Intersection (𝐴⋂𝐵)

set1 = {1}
set2 = {1,2}
set3 = set1 & set2

Image: Richard Zhao, Jonathan Hudson

Composites: Sets 11

James Tam

Union (𝐴 ∪ 𝐵)

set1 = {1}
set2 = {1,2}
set3 = set1 | set2

Image: Richard Zhao, Jonathan Hudson

James Tam

Symmetric Difference (𝐴 △ 𝐵)

The symmetric difference of Set1 and Set2 is the set of elements which are in
either of Set1 and Set2, but not in their intersection.

set1 = {1,2,3}
set2 = {3,4}
set3 = set1 ^ set2

Image: Richard Zhao, Jonathan Hudson

Composites: Sets 12

James Tam

Complement Difference (B \ A
𝐴𝐶⋂ B)

Set subtraction

set1 = {1,2,3}
set2 = {3,4}
set3 = set1 - set2

Image: Richard Zhao, Jonathan Hudson

James Tam

Subset

set1 = {1}
set2 = {1,2}

if(set1.issubset(set2)):
OR
if(set1 <= set2):

Composites: Sets 13

James Tam

Superset

set1 = {1}
set2 = {1,2}

if(set1.issuperset(set2)):
OR
if(set1 >= set2):

James Tam

Equality

set1 = {1}
set2 = {1,2}

if(set1 == set2):

Composites: Sets 14

James Tam

Inequality

set1 = {1}
set2 = {1,2}

if(set1 != set2):

James Tam

Proper Subset

set1 = {1}
set2 = {1,2}

if((set1 <= set2) and (set1 != set2)):
OR
if(set1 < set2):

set1 = {1}
set2 = {1}

Composites: Sets 15

James Tam

Proper Superset

set1 = {1}
set2 = {1,2}

if((set1 >= set2) and (set1 != set2)):
OR
if(set1 > set2):

set1 = {1}
set2 = {1}

James Tam

Disjoint Sets (Do Not Share Elements)

set1 = {1,2}
set2 = {2}

if(set1.isdisjoint(set2)):

set1 = {1,2}
set2 = {3}

Composites: Sets 16

James Tam

Review Of The Composites

- The simple types covered thus far (int, float, bool) are all immutable.

- The final composite type (classes) is significantly different so it’s covered
separately (introduced at the end of the term and covered in depth in
the next course).

String List Array Dictionary Tuple Set

Method of

creation

"" [] numpy.array()
or np.array()

{} () {}

Can be

heterogeneous?

No Yes No Yes Yes Yes

Ordered and

index able?

Yes Yes Yes No Yes No

Mutable1 No Yes Yes Yes No Yes

Duplicates

allowed?

Yes Yes Yes Keys=no,

values=yes

Yes No

James Tam

After This Section You Should Now Know

•Set operations: creating a set, iterating, adding, discarding,
remove, popping, updating, checking for length,
iterating/creating a set dynamically, membership

•Operations from mathematical sets implemented in python:
intersection, union, symmetric difference, complement
difference, subset, superset, equality, inequality, proper
subset, proper superset, disjoint sets.

•Differences between the composite types covered thus far:
- How to create (distinguish) between strings, lists, dictionaries, tuples,

sets and arrays.
- Which ones are mutable and which ones are immutable (you should

know this for non-composites as well).
- Which types are ordinal (elements have an ordered) and which ones can

be indexed.

Composites: Sets 17

James Tam

After This Section You Should Now Know (2)

• Differences between the composite types covered thus far
(continued):
- Which ones allow for duplicate elements.
- Which ones can be heterogeneous (elements don’t have to all be of the

same type).

James Tam

Copyright Notification

• Unless otherwise indicated, all images in this presentation
were provided courtesy of James Tam.

slide 34

