Composites: Sets

Composites, Sets: Part 5

A composite type that is a programming
implementation of a mathematical set.

James Tam

Sets: An Overview

When to use:
- You need a composite where elements are unique (not duplicates).
- Python: adding an element that already exists will fail (no error)

Another composite where the data can be accessed in different ways:
- individual elements,
- the entire collective entity { }

Mutable like a list: elements can change and elements are heterogeneous
(don’t have to be the same type).

Associated operations are different from a list (likely because it’s not
ordered) e.g. indexing, slicing, concatenation, repetition operations are
not available.

Duplicates cannot be added.
- Attempting to do this via the ‘add’ method will not add the duplicate element.

- In this way it provides an automatic form of error prevention (should the data
being modeled not allow for duplicates e.g. students in a university).

James Tam

Composites: Sets

Set Operations

¢ Name of the full online example: 2set_operations.py

¢ Operations covered in the example: creating a set, iterating,
adding, discarding, remove, popping, updating,
iterating/creating a set dynamically, membership

¢ Invalid set operations (not operations in mathematical sets):
concatenation, repetition.

James Tam

Creating A Set
¢ Format:
<name> = {<elementl>, <element2>,... <element n>,}}
e Example:

cpsc231L01Set = {"Humid","Kin","Wai"}

Note: this is not the same syntax as creating a dictionary!

- Recall: This latter type has a key and pair for each element.
cpsc231L@1Dictionary = {1:"Humid",
2:“Kin",
3:"Wai"}

Creating an empty set:

- A function must be called: set()
aSet = set() #aSet = {} Creates a dictionary not a set

<class '"dict'>

Note: the later examples occur after a set has already been
created.

James Tam

Composites: Sets

Adding New Elements

¢ Creating elements one at a time.
setl = set()
setl.add("1")
setl.add(True)
setl.add(2)
setl.add(3)
setl.add(3) #Duplicate not added.

True 2 3 1

1 2 3 True

James Tam

Iterating Through A Set

for element in setl:
print(element,end=" ")
3 Trus 2 1 Recall:itis not ordered

setl = set()
setl.add("1")
setl.add(True
setl.add(2)
setl.add(3)
setl.add(3)

James Tam

Composites: Sets

Discarding (A Single) Specified Element

set2 = {"Red","Blue","Green"}
set2.discard("Red")

- Nothing is discarded if the element is not already in the set
set2.discard("Orchre")

{'Blu=', 'Green', 'Red'}
{'Blue', 'Green'}

Removing (A Single) Specified Element

set2 = {"Red","Blue","Green"}
set2.remove("Red")

- Runtime error results if the element is not already in the set
set2.remove("Orcher jelly")

KeyError: e

m
=1

Popping (Discard) An Element (Randomly
Determined)

set2 = {"Red","Blue","Green"}
set2.pop() #Run multiple times and different element removed

Press enter to see an element popped out of the set

{"Red"', '"Green'}

Press enter to ses an element popped out of the set

{'Blu=", 'Red'}

Press enter to see an element popped out of the set

{*Red', 'Blue'}

James Tam

Discarding (A Single) Element

set2 = {"Red","Blue","Green"}
set2.discard("Orchre")

- Nothing is discarded if the element is not already in the set

James Tam

Composites: Sets

Composites: Sets

Checking Length

set2 = {"Red","Blue","Green"}
len(set2)

James Tam

Updating A Set (Adding One Set To Another)

setl = {"Red","Blue","Green"}

set2 = {"Red","Pink","Purple"}

print(setl,set2) {'Green', 'Red', 'Blue'} {'Purple', 'Red', 'Pink'}
setl.update(set2)

- Duplicates won’t be added.
- The second set (the method argument, in this case set2) will be
unchanged.

print(setl,set2)

{'Green', 'Red', 'Pink', 'Purple', 'Blue'} {'Purple', 'Red', 'Pink'}

X

Iterating And Dynamically Creating New Elements

set3 = set()
for i in range(0,4,1):
set3.add(i)

{0, 1, 2, 3}
I

James Tam

Checking For Membership (Using The ‘In’ Operator)

set3 = {1)213} {1, 2z, 3}
if 1 in set3: 1 in set3
print("1 in set3")

Composites: Sets

Composites: Sets

Terminology: Subset Vs. Proper Subset

[] A pr‘oper‘ Subset Cannot be Is setl a proper subset of set2?
{1y {1}
identical to Superset. setl NOT a proper subset of set2

e Setl = {1}, Set2 = {1}
- Setl is a subset of Set2

- Setl is NOT a proper subset of Set2
because they contain the same

values.
. Setl — {1}, Se'tZ — ii_siif ;_prcper subset of set2?
{1’ 2} setl a proper subset of setz

- Setl is a subset of Set2

- Setl IS a proper subset of Set2
because the values they contain are
not identical.

Why Use Python Sets?

¢ When mathematical set operations are needed e.g. checking
if one set is a superset of another.

Composites: Sets

Set Operations

¢ Name of the full online example: 3set_comparisons.py

e Comparisons covered in the example: intersection, union,
symmetric difference, complement difference, subset,
superset, equality, inequality, proper subset, proper superset,
disjoint sets.

Terminology: Superset Vs. Proper Superset

e A proper superset cannot be
identical to subset.

[) Se‘tl = {1} Se‘tz = {1} Iz setl a proper superset of set2?
. g {1} {1}
- Setlisa superset of Set2 setl NOT a proper superset of setl

- Setl is NOT a proper subset of Set2
because they contain the same

values.
L4 Setl = {1, 2}_, SetZ = Is setl a proper superset of set2?
{1, 2} {1}
{1} setl a proper superset of setc2

- Setl is a subset of Set2

- Setl IS a proper subset of Set2
because the values they contain are
not identical.

Other Set Comparisions

e Equality
if(setl == set2):

* Inequality (not equal)
if(setl != set2):

e Disjoint (do not share an element)

Intersection (A B)

setl = {1}

set2 = {1,2}

set3 = setl & set2
U

Image: Richard Zhao, Jonathan Hudson

Intersection of setl,
{1y {1, 2}
{1}

set

Composites: Sets

10

Composites: Sets

Union (A U B)

setl = {1} Union of setl, setd
set2 = {1,2} {i} e 2
set3 = setl | set2 1, 2}

Image: Richard Zhao, Jonathan Hudson

James Tam

Symmetric Difference (A A B)

The symmetric difference of Setl and Set2 is the set of elements which are in
either of Setl and Set2, but not in their intersection.

setl = {1,2,3} Symmetric difference of secl, set
set2 = {3,4} {1, 2, 3 {3, 4}
set3 = setl ~ set2 i1, 2, 4}

Image: Richard Zhao, Jonathan Hudson

James Tam

11

Composites: Sets

Complement Difference (B\ A
AN B)

Set subtraction

setl = {112“3} I?il;f.p;?m:?t{csij:fzfrence of setl, setZ
set2 = {3,4} {1, 2}

set3 = setl - set2

U

Image: Richard Zhao, Jonathan Hudson

James Tam

Subset

setl = {1}
set2 = {1,2}
if(setl.issubset(setz)): Is setl a subset of ser2?
OR {1y {1, 2}
. issubset: setl is a subset of set2
1f(set1 <= set2): <=: setl is a subset of set2
James Tam

12

Composites: Sets

setl = {1}

set2 = {1,2}

if(setl.issuper‘set(setZ)): Is setl a superset of set2?
OR {1y {1, 2}

if(setl >= set2):

Superset

issuperset: setl is HNOT a superset of set2
»=: setl is NOT a superset of set2

James Tam

setl
set2

{1}
{1,2}

if(setl == set2):

Equality

Inequality test: Is setl NOT eqgual to set2?
{1y {1, 2}
setl is not egqual to set2

James Tam

13

Composites: Sets

Inequality

setl = {1}
set2 = {1,2}
if(setl != set2): Equality test: Is setl equal to set2?

{1y {1, 2}

setl is NOT egual to set2

James Tam
Proper Subset

setl = {1}
set2 = {1,2}

if((setl <= set2) and (setl != set2)):
OR

if(setl < set2):

Is setl a proper subset of set2?
{1} {1, 2}

setl a proper subkset of set2

setl = {1}
set2 = {1}

Is setl a proper subset of set2?
{1} {1}
setl NOT a proper subset of set2

James Tam

14

Composites: Sets

Proper Superset

setl
set2

{1}
{1,2}

if((setl >= set2) and (setl != set2)):
OR

if(setl > set2):

Is setl a proper superset of sec2?
{1, 2} {1}

setl a proper superset of setc2

setl = {1}
set2 = {1}

Is setl a proper superset of sec2?
{1} {1}
setl is NOT a proper superset of setz

James Tam

Disjoint Sets (Do Not Share Elements)

setl
set2

{1,2}
{2}

if(setl.isdisjoint(set2)):

Is setl disjoint (don't share elements) from set2?
{1, 2} {2}
The sets DO share slements

setl = {1,2}
set2 = {3}

Is setl disjoint (does share slements) from set2?
{1, 2} {3}

The sets do NOT share elements

James Tam

15

Composites: Sets

Review Of The Composites

--

Method of numpy .array ()

creation or np.array()

Can be No Yes No Yes Yes Yes
heterogeneous?

Ordered and Yes Yes Yes No Yes No
index able?

Mutable® No Yes Yes Yes No Yes
Duplicates Yes Yes Yes Keys=no, Yes No
allowed? values=yes

- The simple types covered thus far (int, float, bool) are all immutable.

- The final composite type (classes) is significantly different so it’s covered
separately (introduced at the end of the term and covered in depth in
the next course).

James Tam

After This Section You Should Now Know

eSet operations: creating a set, iterating, adding, discarding,
remove, popping, updating, checking for length,
iterating/creating a set dynamically, membership

eOperations from mathematical sets implemented in python:
intersection, union, symmetric difference, complement
difference, subset, superset, equality, inequality, proper
subset, proper superset, disjoint sets.

eDifferences between the composite types covered thus far:
-How to create (distinguish) between strings, lists, dictionaries, tuples,
sets and arrays.
- Which ones are mutable and which ones are immutable (you should
know this for non-composites as well).
- Which types are ordinal (elements have an ordered) and which ones can
be indexed.

16

Composites: Sets

After This Section You Should Now Know (2)

e Differences between the composite types covered thus far

(continued):
- Which ones allow for duplicate elements.
- Which ones can be heterogeneous (elements don’t have to all be of the

same type).

Copyright Notification

¢ Unless otherwise indicated, all images in this presentation
were provided courtesy of James Tam.

17

