Composites: lists

Composites: Lists

* Some list methods

* When to use multi-dimensional lists

* Creating 2D lists

* How to access a 2D list and its parts

* Basic 2D list operations: display, accessing parts,
copying the list

* Using named constants to stay within list bounds

* Dynamically creating 2D lists with append.

What You Should Already Know

¢ The following notes were already covered in the
looping/repetition section.

¢ They are included for your reference (and if needed to remind
you of what you need to review).

¢ We won'’t be covering them again in class but instead we will
immediately proceed to the next section.

New Type Of Variable: List midterm

¢ This is only a very basic introduction.
- For the keeners: more details will come later.

e String: consists of individual elements that can be accessed

via an index (zero to length of the string minus one) s1 = "Jim

tam"
0123456

Jim tam

e List: need not consist only of characters nor does it have to be
homogeneous (e.g. all integers, all Booleans)
- i.e. Python lists can be heterogeneous
- 1listl = [1, "a",True]

0 1 2
1 a True

James Tam

Cover after
Creating A List (Fixed Size)

e*Format (‘n’ element list):

<list_name> = [<value 1>, <value 2>, ... <value n>]

Element 0 Element 1 Element n-1

Example:

#List with 5 elements, index ranges from @ to (5-1)

percentages = [5%.6, 100.0, 7§.5, 9%.9, 65.1]
1 4

Other Examples:
letter‘s = ["A") "B", IIAII]

names = ["The Borg", "Klingon

"

, "Hirogin", "Jem’hadar"]

1 These 4 names (Borg, Klingon, Hirogin, Jem’hadar) © are CBS

James Tam

Composites: lists

Composites: lists

Accessing/Displaying A List

* Because a list is composite you can access the entire list or
individual elements.
List
[|

percentages = [50.0, 100.0, 78.5, 99.9, 65.1]

Elements

* Name of the list accesses the whole list
print(percentages)

¢ Name of the list and an index “[index]”accesses an element
print(percentages[1]) *>»>» print{percentage3[l])

100.0

Basic List Operations

¢ Name of the online example:
S5modifying_displaying_list

e Common list operations:

- Create a new fixed size list:
alList = [2,6,2]
- Displaying entire list:
i=20
size = len(alList)
while(i < size): #i takes on values from @ - (size-1)
print(aList[i], end=" ")
i=1+1
- Modifying a single element
alList[size-1] = 3
- Modifying all elements
while(i < size): #i takes on values from @ - (size-1)
aList[i] = aList[i] * 2
i=1i+1

Composites: lists

Additional List Operations MIGiErm

¢ Name of the online example:
6adding 2 end _modify_select_while

alist = ["A","a","z","B"]
New list operations:

- Adding new elements: adding new elements to end (append method):
alList.append(ch)

- Modifying select elements (based upon a condition):
i=20
size = len(alList)
while(i < size): #A=ASCII 65, Z=90
if((aList[i]>="A") and (aList[i]<="Z")):
aList[i] = aList[i] + "!" #Applies to caps only
i=1+1

James Tam

Cover after
For Loops Can Be Used To Iterate Lists

¢ Name of the online example: 7adding_2_ select_for

aList = ["A","a","z","B"]
- Iterating list using a for-loop:
for ch in alist:
print(ch)

Composites: lists

Types Of Variables

How lists fit into what
you have learned
A string or list can be

decomposed into Python
individual characters. variables
1. Simple 2. Aggregate
(atomic) (composite)
integer boolean float

Example Simple type
A variable containing the
number 707 can’t be
meaningfully
decomposed into parts

Lists Tuples

Strings

Some Topics (Sort Of) Covered

Composites: lists

Basic List Operations

e Common list operations:

- Create a new fixed size list:
alList = [2,6,2]
- Displaying entire list:
i=290
size = len(alist)
while(i < size): #i takes on values from @ - (size-1)
print(aList[i], end=" ")
i=1i+1
- Modifying a single element
alist[size-1] = 3
- Modifying all elements
while(i < size): #i takes on values from @ - (size-1)
alList[i] = alList[i] * 2
i=1i+1
- Adding new elements: adding new elements to end (append method):
aList.append(ch)

Negative Indices

e Although Python allows for negative indices (-1 last element, -
2 second last...-<size>) this is unusual and this approach is not
allowed in other languages.

* So unless otherwise told your
ranging from <zero> to <list size — 1>

¢ Don’t use negative indices.

Composites: lists

You already know:

Creating A Variable Sized List: Looping ceaieaiea Siee allat

once.

® You can use a loop and append new elements onto the end of
the list.

¢ Name of the full example:
11list_creation_loop_N_append.py

SIZE = 5
alList = [] #Create new list aList = [] #Create new list
i=29 for i in range(0,SIZE,1):
while(i<SIZE): alist.append(i)
aList.append(i) print(alList[i],end=" ")
print(aList[i],end=" ")
i=1i+1

=
=
| O

L L
[Togyt o

James Tam

¢ Name of the full example:

Creating A Variable Sized List: Repetition Operator

¢ Create a list of any size but it is initialized all with the same
value.

2list_creation_repetition.py

SIZE = 5
aList = [@]*SIZE _
print(alist) [0, ©, O, C, O]

alList[e] = 7
alist[SIZE-1]=13
print(alList) [7, @, 0, 0, 13]

Composites: lists

Some List Methods

¢ Methods we cover in this version of CPSC 217/231:
- Example starting list: aList = [1,2,3]
- (Already covered), add to the end: append
- Insert: add element at the specified index:

insert(<index>,<element>)
alList.insert(0,"first") ['first', 1, 2, 3]

- Extend: add another list to the end of another list.
extend(<Llist>))

alist.append([“second","third"]) ['fizst’, 1, 2, 3, ['second’, 'third']]

¢ Here’s some online documentation on these and other list

methods:

- https://www.w3schools.com/python/python_lists_methods.asp

- If you click ‘next’ at the above link it also provides basic multiple choice
questions to evaluate your knowledge (keep in mind some questions are
really simple).

Jam

es Tam

The “Slicing-Operator” (Also Works With Strings)

¢ The “square brackets” with a single integer accesses/modifies
a single element.

¢ A range can be specified to retrieve multiple elements into a
new list “sub list”

e Format:

<new sub list> = <existing list>[<start index>:<end idQ}]
Exclude

Include

element
element

subListl = alList[1:3]

https://www.w3schools.com/python/python_lists_methods.asp

Composites: lists

Examples Of List Slicing

e Name of the online example: 31istSlicing

0 1 2 3 4 5
alist = ["a","b","c","d","e","f"]
subListl = alList[1:3]
print(subListl) r'nr, e

subList2 = alist[:3]
print(subList2) Car, e en
subList3 = alist[4:]
print(subList3) ..., £y

subList4 = alist[:]
print(subList4) [rar, e, ccr, A, ter, ']

[=

['b', 'c']

['a', 'b', 'c']

['e', "£']

['a', 'B', 'c', 'd', 'e', '£'] James Tam

Common List Operations

¢ They have already been covered previously e.g. creating new
empty list, iterating a list, changing/accessing elements etc.

* You can refer to your notes when lists were first introduced
(looping/repetition).

Composites: lists

Creating A New List By Copying An Existing List

¢ This is not a comprehensive list

¢ Assume we have this list:
listl = [1,2,3]
- Method 1 (python specific): Utilize one of the prebuilt python methods
for copying a list (if you don’t know which one to use then use “deep

copy).
- Method 2 (python specific): write the code yourself using a FOR-loop
for element in listl: (fﬂ:']dlsgr:] fanndgez(g?ol),gn,(names)):
list2.append(element) JT: ‘names’ is a list

- Method 3(language independent): write the code yourself using a

WHILE-loop.

i=20

List2 = []

size = len(listl)

while(i<size):
list2.append(1listl[i])
i=1i+1

Creating A New List Via Copying (Python Specific)

e Name of the full example: 41ist_creation_copying.py

original = [1,2,3]
copy = [i for i in original]
print(original,copy) [2 311 2 3

10

Composites: lists

Deciphering The Previous Example

original = [1,2,3] Tam’s reaction when
copy = [i for i in original] first seeing this: WTH?
print(original, copy)

¢ Remember what | taught you at the beginning of the term, when faced
with a complex and/or big problem break it into parts.

e Example: decomposing your program into parts, each part will be
implemented with one or more functions.

simplifying A Problem With Functional
Decomposition

James Tam

Reminder: Past Examples Of Decomposition

[f217F/exam/midterm1/midterm1_some_extras.pdf

e Midterm | help

materials: tackle a A T B
complex Boolean

expression by examining Applying Precedence/Or,
only a part at a time. it o

2]

in the branch
Firstin a left-

if 2¢3 or 31=3 and not 2¢-2:

James Tam

11

Composites: lists

Reminder: Past Examples Of Decomposition (2)

* Functional Original: Huh?22!1!
decomposition: scope s

cope: Visually Showing When Memory Lg
Be Accessed

Scope of

- Thescopeofan 4710 RATIO = 7
identifier (variable, def getInformation():
constant) is where it (31fe<® age = input("Age: ") |
may be accessed and
used

= In Python':
= An identifier comes
into scope (becomes
visible to the
program and can be

catAge = age * RATIO-]J

getInformation()

End of funct

Simplified: You already know this

Scope: Visually Showing Wher
Be Access

* The scope of an
identifier (variable,
constant) is where it
may be accessed and
used.

* In Python*:

= Anidentifier comes

into scope (becomes
visible to the

RATIO = 7

James Tam

Back To The WTH Code

e copy = [1 for i in original]

for i in original 1) You should know what’s happening: from the repetition
section: for-loops iterating a list

i for i in original 2) Now that you have been reminded as to what’s happening in
the code above #1 we explain in class what this is doing

copy = [i for i in original] 3) Finally the result of the expression from #2 above is assigned
to ‘copy’

James Tam

12

Composites: lists

But What Do | Do When Tam Isn’t Around In The
Future?

¢ Rejoice and dance in the streets! (Hallelujah!)
e (Just kidding folks!)

Searching The Web Directly May Be Challenging

* |t may be okay if you have a search term but in this case you
just have a concept (non-CPSC courses) or code (in this
example).

e Here’s where online A.l. tools ‘may’ help:

- Bing Co-pilot: “explain what this python code is doing copy =
[i for i in originall”

@ What it does

Python ~] Copy

copy = [i for i in original]

original is assumed to be a list (e.g., |[1, 2, 31)).
i for i in original iterates over each element i in original .
* It builds a new list containing all those elements.

s The result is assigned fo | copy .

13

Composites: lists

Answer From An Alternative ‘Intelligence’

Facebook’s Meta:

explain what this python code is doing copy = [i for i in originall

That Python code is creating a shallow copy of a list called original.
Here's how it breaks down:
« for i in original: This loops through each element 1 in the original list.
e [i for i in original]: Thisis a list comprehension that creates a new list with each
element i from original.
« copy = [...]:Theresulting new list is assigned to the variable copy.
The result is a new list (copy) that contains all the same elements as original. However, it's a
shallow copy, meaning if original contains mutable objects (like lists or dictionaries), copy will

reference those same objects, not copies of them. ¢

JT’s caution: Just like web searches confirm your information:

- Verify by looking at a good source: textbook published by a reputable
publisher.

- Writing your own code and testing the results.

James Tam

Review: Passing Parameters Which Aren’t Lists

A copy of the data stored in the variable is passed into the
function.

For previous examples refer to functional decomposition
examples where simple types were passed as function
parameters: bool, int, float

Changes made to the parameters are only made to local

variables.
def fun(num):
num = 21 #Only num local to fun changed
num = 12
fun(num) #Still 12

The changed local variables must have their values returned
back to the caller in order to be retained.

James Tam

14

Composites: lists

More Details On Lists

e With the simple variable types (integer, float, boolean)

you can think of as a single memory location.

- E.g
cge = 37
cool = False

¢ Declaring a list variable will result in two memory
locations allocated in memory.
- One location is for the list itself (“The multi-suite building”)

- Another location “refers to” or contains the address of the
building.

Example: lllustrating List References

¢ Name of the example program: 51istReferences.py

num = 123
listl = [1,2,3]
list2 = listl

print(listl) Bifofe .
print(list2) bz

listi[@] = 888
list2[2] = 777
print(listl) Lf

print(list2) {i :

7771

'
, 7771

15

Composites: lists

New Term: Shallow Copy

¢ Shallow copy: the address of a list (or some of the composite
types) is copied rather than the data (elements of a list).

- Result: two references containing the address of (references to) a single
list.

- Previous example:

Copy contents (address not a list)
from ‘1ist1’into ‘1ist2’

list2 = listl

¢ The shallow copy allows access to the list so it may be
changed by either reference to it (in this example it’s
“listl’or “list2’).

One Part Of The Previous Example Was
Actually Unneeded

def read(classGrades):

When list is ‘passed’ as a parameter...

return(classGrades, average)

...returning the list is likely not needed

More details on ‘why’ coming up shortly!

16

Composites: lists

Passing References (Lists)

e Recall: A list variable is actually just a reference to a list (~a
paper with an address written on it).

alList = [1,2,3]
Reference to the list The list (no name just a
(contains the memory location in memory)
address)

¢ A copy of the address is passed into the function (~copying
what’s on the paper, the address).
def fun(copylList):
copyList[@] = 10
¢ The local reference ‘refers’ to the original list (use the paper

to go to the specified address).
- In essence: parameter passing with lists is a shallow copy.

Passing A List As A Parameter

e Areference to the list is passed, in the function a local
variable which is another reference can allow

Example:
def read(classGrades):

for i in range (@, CLASS_SIZE, 1):
temp =i +1
print("Enter grade for student no.", temp, ":")

= float(input (">"))
total = total +
def start():
classGrades = initialize()
read(classGrades)

17

Composites: lists

Example: Passing Lists As Parameters

¢ Name of the example program:
6listParametersPassAddress

e Learning: a list parameter allows changes to the original list
(persist even after the function ends).

def funl(alListCopy):
aListCopy[@] = alListCopy[@] * 2
aListCopy[1] = alListCopy[1]
return(alListCopy)

*
N

def fun2(aListCopy):
aListCopy[@] = alListCopy[@] * 2
aListCopy[1] = aListCopy[1] * 2

James Tam

Example: Passing Lists As Parameters (2)

def Star‘t(): Original list in start() before function calls: [2, 4]

alList = [2,4]

print("Original list in start() before function
calls:\t", end="")

print(alList)

aList = funl(alList)

print("Original list in start() after calling funl():\t",
end="")

LIQUNEIRYT 5 ina] 1iat in start() after calling funl():

fun2(alList

print("Original list in start() after calling fun2():\t",
end="")

print(alList)

start() Original list imn start{) after calling fun2(): [8, 16]

James Tam

18

Composites: lists

When To Use Lists Of Different Dimensions

¢|t’s determined by the data — the number of categories of information
determines the number of dimensions to use.

e Examples:

*(1D list)
-Tracking grades for a class (previous example)
-Each cell contains the grade for a student i.e., grades[i]
-There is one dimension that specifies which student’s grades are being
accessed

One dimension (which student)

*(2D list)
-Expanded grades program (table: grades for multiple lectures)

-Again there is one dimension that specifies which student’s grades are being
accessed

-The other dimension can be used to specify the lecture section

James Tam

When To Use Lists Of Different Dimensions (2)

*(2D list continued)

Student
|_ecture - :
section First Second | Third
student |[student |student
LO1
L02
LO3
LO4
LO5
LON

James Tam

19

Composites: lists

When To Use Lists Of Different Dimensions (3)

(2D list continued)
eNotice that each row is merely a 1D list Important:

*(A 2D list is a list containing rows of 1D lists) * Listelements are
specified in the order of

[row] [column]

» Specifying only a single

Columns (e.g. grades)
A set of brackets

~ [0] [4] 2] [3]\ specifies the row
07 101 ~
(1 fLoz
2
. — Rows
(31 |Loa ..
lecture
(41 1495 section)
[5] |Lo6
[6] |LO7 /

Creating And Initializing A Multi-Dimensional
List In Python (Fixed Size During Creation)

General structure

<list_name> = [[<value 1>, <value 2>, ... <value n>],
[<value 1>, <value 2>, ... <value n>],
Rows
[<value 1>, <value 2>, ... <value n>]]
Columns
James Tam

20

Composites: lists

Creating And Initializing A Multi-Dimensional List In

Python (2): Fixed Size During Creation
Name of the example program: 7display2DList.py

Learning: creating, displaying a fixed size 2D Iis;c=6
table = [[0, 0, @],

r=0
[1) 1) 1])
[2, 2, 2], r=t
[3, 3, 3]] r=o2

for r in range (0, 4, 1):
print (table[r]) #Each call to print displays a 1D list

for r in range (90,4,1):

for ¢ in range (9,3, 1)#D15p1ays list element (col)
print(table[r][c], end="") = o RINN
print() r=1

print(table[2][0]) #Displays 2 not ©

Creating 2D Lists Via The Repetition Operator

Name of the example program: 8creatinglListViaRepetition.py
Learning:

- Creating a variable sized 2D list using the repetition operator and the append
method.

- The 2D list is created by creating a 1D list and appending the 1D list to the end
of the 2D list.

MAX_COLUMNS = 5

MAX_ROWS = 3

ELEMENT = "*"

aList = []

r=20

while(r < MAX_ROWS):
tempList = [ELEMENT] * MAX_COLUMNS
aList.append(tempList)
r=r+1

21

Composites: lists

Using The Repetition Operator On 1D Lists

¢ You have just seen how the repetition operator can create a
1D list (one set of square brackets).
e Example:
list2 = [@] * 4
print(list2) 19, o, o, 0]
¢ Using a repetition operator on an existing 1D list merely
repeats instances of that 1D list.
- Consider: 1ist2 = [@] * 4 #Repeats list with 1 element x 4

- Examples:
o listl= [1,2,3]
e 1list2 = [0] * 4
e 1list3 = 1listl * 5 #List with 15 elements: 3 elements x 5
e listd = 1ist2 * 2 #List with 8 elements: 4 elements x 2

e print(len(list3),len(list4)) 15 2
e print(list3) i1, 2z, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
e print(list4) (2, 2, 2, o, 0, O, 9, 0]

James Tam

How To Avoid Overflowing 2D Lists

e Employ named constants

¢ Recall that the previous example declared 2 named constants.

MAX_COLUMNS = 5
MAX_ROWS = 3

e Control access to list elements using these constants.

r=20
while(r < MAX_ROWS):
c=20
while(c < MAX_COLUMNS):
print(aList[r][c], end = "")
c=c+1
print()
r=r+1

James Tam

22

Composites: lists

Creating And Initializing A Multi-Dimensional
List In Python: Dynamic Creation

General structure (Using

List ref
loops):
. [] c=0 c=1 c=2 c=3
* Create a variable that refers to an
R r=29 Row |
empty list
*Create list: -1 Row |
*One loop (outer loop) traverses the < | - |
rows.
* Each iteration of the outer loop creates
a new 1D list (empty at start) e
*Then the inner loop traverses the te.
elements of the newly created 1D list
creating and initializing each element in __aGrid = []
a fashion similar to how a single 1D list /7 *for r in range (@, 3, 1):
was created and initialized (add to end) (aGrid.append ([])
* Repeat the process for each row in the Y for c in range (@, 3, 1):
list . aValue = <Some source>
\ aGrid[r].append(avalue)
~ -

James Tam

Repeating Just The Steps In The Code Creating The List

1. Create a variable that refers to an empty list Recall ‘append’ is unique
Grid = [] to a list. Append won’t
atrid = work if for something other

than a list but for a list
. . . an empty row can have new
2. Successively create rows in the list elements appended.

for r in range (©,noRows,1): num = 123
: num.append(4)
aGrid.append ([])

3. Eachrowis a 1D list, add elements to the end of the 1D list (empty list
needed in #2 so that the append method can be called to add elements
to the end).

for c in range (@,noColumns,1):
aGrid[r].append("*")

- The [r] part of specifies which row the loop will add elements on the end.
aGrid[r].append("*")

James Tam

23

Composites: lists

Example 2D List Program: A Variable Sized 2D
List (Dynamic)

*Name of the example program: 5variableSize2DList.py
agrid = []
noRows = int(input("Number rows: "))
noColumns = int(input("Number columns: "))
#Create list
for r in range (0,noRows,1):
aGrid.append ([]) #Create empty row, add to list
for ¢ in range (@,noColumns,1):
element = input("Type in a single character: ")
aGrid[r].append(element) #Add to the end of new row
#Display list
for r in range (@,noRows,1):
for ¢ in range (@,noColumns,1):
print(aGrid[r][c], end="")

print()
James Tam
H . H Final JT hint: Make
2D Lists: Using Append |..re you coply the
right operation on the
right type of variable.
table = [[0, 0, 9],
(1, 1, 1],
[2, 2, 2],
[3, 3, 3]]

table.append([2,1,7]) #Where was the append occurring?
print(table)

table[3].append(3) #Where was the append occurring?
print(table)

#What element is the append applied to?
table[2][1].append(888)

Hint: add the following before the last instruction
print(table[2][1])
print(type(table[2][1]))

James Tam

24

Composites: lists

Lists: Final Notes

e Reminder: python list elements need not be all the same type.

e Python 2D lists need not be rectangular.

aList = [[1,True,"hi"], Row index 0: int, bool, string
[1,2.3], Row index 1: int, float
[1] Row index 2: empty list

After This Section You Should Now Know

When to use lists of different dimensions.

¢ Basic operations on a 2D list.

e How to create a 2D list: fixed size and a variable sized list by
using the repetition operator.

e How to access a 2D list: the whole list, rows in the list and
individual elements.

The use of a named constant to ensure that list boundaries
are adhered to.

¢ The ability to dynamically creating 2D lists using the append
function for both the rows and columns.

25

Composites: lists

Copyright Notification

¢ Unless otherwise indicated, all images in this presentation
were provided courtesy of James Tam.

26

