
Composites: lists 1

James Tam

Composites: Lists

• Some list methods
• When to use multi-dimensional lists
• Creating 2D lists
• How to access a 2D list and its parts
• Basic 2D list operations: display, accessing parts,

copying the list
• Using named constants to stay within list bounds
• Dynamically creating 2D lists with append.

James Tam

What You Should Already Know

• The following notes were already covered in the
looping/repetition section.

• They are included for your reference (and if needed to remind
you of what you need to review).

• We won’t be covering them again in class but instead we will
immediately proceed to the next section.

Composites: lists 2

James Tam

New Type Of Variable: List

• This is only a very basic introduction.
- For the keeners: more details will come later.

• String: consists of individual elements that can be accessed
via an index (zero to length of the string minus one) s1 = "Jim
tam"

• List: need not consist only of characters nor does it have to be
homogeneous (e.g. all integers, all Booleans)
- i.e. Python lists can be heterogeneous
- list1 = [1, "a",True]

Jim tam
0 1 2 3 4 5 6

1 a True
0 1 2

Cover after

midterm

James Tam

Creating A List (Fixed Size)

•Format (‘n’ element list):

<list_name> = [<value 1>, <value 2>, ... <value n>]

Example:

#List with 5 elements, index ranges from 0 to (5-1)

percentages = [50.0, 100.0, 78.5, 99.9, 65.1]

Other Examples:

letters = ["A", "B", "A"]

names = ["The Borg", "Klingon ", "Hirogin", "Jem’hadar"]

Element 0 Element 1 Element n-1

0 1 2 3 4

1 These 4 names (Borg, Klingon, Hirogin, Jem’hadar)  are CBS

Cover after

midterm

Composites: lists 3

James Tam

Accessing/Displaying A List

• Because a list is composite you can access the entire list or
individual elements.

percentages = [50.0, 100.0, 78.5, 99.9, 65.1]

• Name of the list accesses the whole list
print(percentages)

• Name of the list and an index “[index]”accesses an element
print(percentages[1])

List

Elements

Cover after

midterm

James Tam

Basic List Operations

• Name of the online example:
5modifying_displaying_list

• Common list operations:
- Create a new fixed size list:
aList = [2,6,2]

- Displaying entire list:
i = 0
size = len(aList)
while(i < size): #i takes on values from 0 – (size-1)

print(aList[i], end=" ")
i = i + 1

- Modifying a single element
aList[size-1] = 3

- Modifying all elements
while(i < size): #i takes on values from 0 – (size-1)

aList[i] = aList[i] * 2
i = i + 1

Cover after

midterm

Composites: lists 4

James Tam

Additional List Operations

• Name of the online example:
6adding_2_end_modify_select_while

aList = ["A","a","z","B"]

New list operations:

- Adding new elements: adding new elements to end (append method):
aList.append(ch)

- Modifying select elements (based upon a condition):
i = 0
size = len(aList)
while(i < size): #A=ASCII 65, Z=90

if((aList[i]>="A") and (aList[i]<="Z")):
aList[i] = aList[i] + "!" #Applies to caps only

i = i + 1

Cover after

midterm

James Tam

For Loops Can Be Used To Iterate Lists

• Name of the online example: 7adding_2_select_for

aList = ["A","a","z","B"]

- Iterating list using a for-loop:
for ch in aList:

print(ch)

Cover after

midterm

Composites: lists 5

James Tam

Types Of Variables

Python

variables

1. Simple

(atomic)

integer boolean float

2. Aggregate

(composite)

Lists Tuples Strings

Example Simple type

A variable containing the

number 707 can’t be

meaningfully

decomposed into parts

How lists fit into what

you have learned
A string or list can be
decomposed into
individual characters.

James Tam

Some Topics (Sort Of) Covered

Composites: lists 6

James Tam

Basic List Operations

• Common list operations:
- Create a new fixed size list:
aList = [2,6,2]

- Displaying entire list:
i = 0
size = len(aList)
while(i < size): #i takes on values from 0 – (size-1)

print(aList[i], end=" ")
i = i + 1

- Modifying a single element
aList[size-1] = 3

- Modifying all elements
while(i < size): #i takes on values from 0 – (size-1)

aList[i] = aList[i] * 2
i = i + 1

- Adding new elements: adding new elements to end (append method):
aList.append(ch)

James Tam

Negative Indices

• Although Python allows for negative indices (-1 last element, -
2 second last…-<size>) this is unusual and this approach is not
allowed in other languages.

• So unless otherwise told your index should be a positive
integer ranging from <zero> to <list size – 1>

• Don’t use negative indices.

Composites: lists 7

James Tam

Creating A Variable Sized List: Looping

• You can use a loop and append new elements onto the end of
the list.

• Name of the full example:
1list_creation_loop_N_append.py

SIZE = 5
aList = [] #Create new list
i = 0
while(i<SIZE):

aList.append(i)
print(aList[i],end=" ")
i = i + 1

aList = [] #Create new list
for i in range(0,SIZE,1):

aList.append(i)
print(aList[i],end=" ")

You already know:

create a fixed size all at

once.
aList = [1,2,3]

James Tam

Creating A Variable Sized List: Repetition Operator

• Create a list of any size but it is initialized all with the same
value.

• Name of the full example:
2list_creation_repetition.py

SIZE = 5
aList = [0]*SIZE
print(aList)

aList[0] = 7
aList[SIZE-1]= 13
print(aList)

Composites: lists 8

James Tam

Some List Methods

• Methods we cover in this version of CPSC 217/231:
- Example starting list: aList = [1,2,3]

- (Already covered), add to the end: append

- Insert: add element at the specified index:
insert(<index>,<element>)
aList.insert(0,"first")

- Extend: add another list to the end of another list.
extend(<list>))
aList.append(["second","third"])

• Here’s some online documentation on these and other list
methods:
- https://www.w3schools.com/python/python_lists_methods.asp

- If you click ‘next’ at the above link it also provides basic multiple choice
questions to evaluate your knowledge (keep in mind some questions are
really simple).

James Tam

The “Slicing-Operator” (Also Works With Strings)

• The “square brackets” with a single integer accesses/modifies
a single element.

• A range can be specified to retrieve multiple elements into a
new list “sub list”

• Format:
<new sub list> = <existing list>[<start index>:<end index>]

• Example:
subList1 = aList[1:3]

Include

element

Exclude

element

https://www.w3schools.com/python/python_lists_methods.asp

Composites: lists 9

James Tam

Examples Of List Slicing

• Name of the online example: 3listSlicing

aList = ["a","b","c","d","e","f"]
subList1 = aList[1:3]
print(subList1)

subList2 = aList[:3]
print(subList2)

subList3 = aList[4:]
print(subList3)

subList4 = aList[:]
print(subList4)

0 1 2 3 4 5

James Tam

Common List Operations

• They have already been covered previously e.g. creating new
empty list, iterating a list, changing/accessing elements etc.

• You can refer to your notes when lists were first introduced
(looping/repetition).

Composites: lists 10

James Tam

Creating A New List By Copying An Existing List

• This is not a comprehensive list

• Assume we have this list:
list1 = [1,2,3]

- Method 1 (python specific): Utilize one of the prebuilt python methods
for copying a list (if you don’t know which one to use then use “deep
copy).

- Method 2 (python specific): write the code yourself using a FOR-loop
for element in list1:

list2.append(element)

- Method 3(language independent): write the code yourself using a
WHILE-loop.
i = 0

List2 = []

size = len(list1)

while(i<size):

list2.append(list1[i])

i = i + 1

(Hudson and Zhao)

JT: ‘names’ is a list

James Tam

Creating A New List Via Copying (Python Specific)

• Name of the full example: 4list_creation_copying.py

original = [1,2,3]

copy = [i for i in original]

print(original,copy)

Composites: lists 11

James Tam

Deciphering The Previous Example

original = [1,2,3]

copy = [i for i in original]

print(original,copy)

• Remember what I taught you at the beginning of the term, when faced
with a complex and/or big problem break it into parts.

• Example: decomposing your program into parts, each part will be
implemented with one or more functions.

Tam’s reaction when

first seeing this: WTH?

James Tam

Reminder: Past Examples Of Decomposition

• Midterm I help
materials: tackle a
complex Boolean
expression by examining
only a part at a time.

Composites: lists 12

James Tam

Reminder: Past Examples Of Decomposition (2)

• Functional
decomposition: scope

Original: Huh???!!!

Simplified: You already know this

James Tam

• copy = [i for i in original]

Back To The WTH Code

for i in original 1) You should know what’s happening: from the repetition

section: for-loops iterating a list

i for i in original 2) Now that you have been reminded as to what’s happening in

the code above #1 we explain in class what this is doing

copy = [i for i in original] 3) Finally the result of the expression from #2 above is assigned

to ‘copy’

Composites: lists 13

James Tam

But What Do I Do When Tam Isn’t Around In The
Future?

• Rejoice and dance in the streets! (Hallelujah!)

• (Just kidding folks!)

James Tam

Searching The Web Directly May Be Challenging

• It may be okay if you have a search term but in this case you
just have a concept (non-CPSC courses) or code (in this
example).

• Here’s where online A.I. tools ‘may’ help:
- Bing Co-pilot: “explain what this python code is doing copy =
[i for i in original]”

Composites: lists 14

James Tam

Answer From An Alternative ‘Intelligence’

• Facebook’s Meta:

• JT’s caution: Just like web searches confirm your information:
- Verify by looking at a good source: textbook published by a reputable

publisher.

- Writing your own code and testing the results.

James Tam

Review: Passing Parameters Which Aren’t Lists

• A copy of the data stored in the variable is passed into the
function.

• For previous examples refer to functional decomposition
examples where simple types were passed as function
parameters: bool, int, float

• Changes made to the parameters are only made to local
variables.
def fun(num):

num = 21 #Only num local to fun changed
num = 12
fun(num) #Still 12

• The changed local variables must have their values returned
back to the caller in order to be retained.

Composites: lists 15

James Tam

More Details On Lists

• With the simple variable types (integer, float, boolean)
you can think of as a single memory location.
- E.g.

age = 37
cool = False

• Declaring a list variable will result in two memory
locations allocated in memory.
- One location is for the list itself (“The multi-suite building”)

- Another location “refers to” or contains the address of the
building.

age 37

cool False

123

123 Sesame St.

James Tam

Example: Illustrating List References

• Name of the example program: 5listReferences.py

num = 123

list1 = [1,2,3]

list2 = list1

print(list1)

print(list2)

list1[0] = 888

list2[2] = 777

print(list1)

print(list2)

Composites: lists 16

James Tam

New Term: Shallow Copy

• Shallow copy: the address of a list (or some of the composite
types) is copied rather than the data (elements of a list).
- Result: two references containing the address of (references to) a single

list.

- Previous example:

list2 = list1

• The shallow copy allows access to the list so it may be
changed by either reference to it (in this example it’s
‘list1’or ‘list2’).

123

123 Sesame St.

Copy contents (address not a list)

from ‘list1’ into ‘list2’

123 Sesame St.

James Tam

One Part Of The Previous Example Was
Actually Unneeded

def read(classGrades):

: :

return(classGrades, average)

When list is ‘passed’ as a parameter…

…returning the list is likely not needed

More details on ‘why’ coming up shortly!

Composites: lists 17

James Tam

Passing References (Lists)

• Recall: A list variable is actually just a reference to a list (~a
paper with an address written on it).
aList = [1,2,3]

• A copy of the address is passed into the function (~copying
what’s on the paper, the address).
def fun(copyList):

copyList[0] = 10

• The local reference ‘refers’ to the original list (use the paper
to go to the specified address).
- In essence: parameter passing with lists is a shallow copy.

The list (no name just a

location in memory)

Reference to the list

(contains the memory

address)

James Tam

Passing A List As A Parameter

• A reference to the list is passed, in the function a local
variable which is another reference can allow access to the
list.

Example:
def read(classGrades):

...
for i in range (0, CLASS_SIZE, 1):

temp = i + 1
print("Enter grade for student no.", temp, ":")
classGrades[i] = float(input (">"))
total = total + classGrades[i]

def start():

classGrades = initialize()

read(classGrades)

Composites: lists 18

James Tam

Example: Passing Lists As Parameters

• Name of the example program:
6listParametersPassAddress

• Learning : a list parameter allows changes to the original list
(persist even after the function ends).

def fun1(aListCopy):

aListCopy[0] = aListCopy[0] * 2

aListCopy[1] = aListCopy[1] * 2

return(aListCopy)

def fun2(aListCopy):

aListCopy[0] = aListCopy[0] * 2

aListCopy[1] = aListCopy[1] * 2

James Tam

Example: Passing Lists As Parameters (2)

def start():

aList = [2,4]

print("Original list in start() before function

calls:\t", end="")

print(aList)

aList = fun1(aList)

print("Original list in start() after calling fun1():\t",

end="")

print(aList)

fun2(aList)

print("Original list in start() after calling fun2():\t",

end="")

print(aList)

start()

Composites: lists 19

James Tam

When To Use Lists Of Different Dimensions

•It’s determined by the data – the number of categories of information
determines the number of dimensions to use.

• Examples:

•(1D list)
-Tracking grades for a class (previous example)
-Each cell contains the grade for a student i.e., grades[i]
-There is one dimension that specifies which student’s grades are being
accessed

•(2D list)
-Expanded grades program (table: grades for multiple lectures)
-Again there is one dimension that specifies which student’s grades are being
accessed

-The other dimension can be used to specify the lecture section

One dimension (which student)

James Tam

When To Use Lists Of Different Dimensions (2)

•(2D list continued)

Student

Lecture

section First

student

Second

student

Third

student
…

L01

L02

L03

L04

L05

:

L0N

Composites: lists 20

James Tam

When To Use Lists Of Different Dimensions (3)

•(2D list continued)

•Notice that each row is merely a 1D list

•(A 2D list is a list containing rows of 1D lists)

L02

L07

L01

L03

L04

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

Columns (e.g. grades)

Rows

(e.g.

lecture

section)

L06

L05

Important:

• List elements are

specified in the order of
[row] [column]

• Specifying only a single

set of brackets

specifies the row

James Tam

Creating And Initializing A Multi-Dimensional
List In Python (Fixed Size During Creation)

General structure
<list_name> = [[<value 1>, <value 2>, ... <value n>],

[<value 1>, <value 2>, ... <value n>],

: : :

: : :

[<value 1>, <value 2>, ... <value n>]]

Rows

Columns

Composites: lists 21

James Tam

Name of the example program: 7display2DList.py

Learning: creating, displaying a fixed size 2D list
table = [[0, 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

for r in range (0, 4, 1):

print (table[r]) #Each call to print displays a 1D list

for r in range (0,4,1):

for c in range (0,3,1):

print(table[r][c], end="")

print()

print(table[2][0]) #Displays 2 not 0

Creating And Initializing A Multi-Dimensional List In
Python (2): Fixed Size During Creation

r = 0

r = 1

r = 2

r = 3

r = 0

r = 1

r = 2

r = 3

0 1 2 (col)

c=0 c=1 c=2

#Displays list element

James Tam

Creating 2D Lists Via The Repetition Operator

Name of the example program: 8creatingListViaRepetition.py

Learning:
- Creating a variable sized 2D list using the repetition operator and the append

method.

- The 2D list is created by creating a 1D list and appending the 1D list to the end
of the 2D list.

MAX_COLUMNS = 5

MAX_ROWS = 3

ELEMENT = "*"

aList = []

r = 0

while(r < MAX_ROWS):

tempList = [ELEMENT] * MAX_COLUMNS

aList.append(tempList)

r = r + 1

Composites: lists 22

James Tam

Using The Repetition Operator On 1D Lists

• You have just seen how the repetition operator can create a
1D list (one set of square brackets).

• Example:
list2 = [0] * 4
print(list2)

• Using a repetition operator on an existing 1D list merely
repeats instances of that 1D list.
- Consider: list2 = [0] * 4 #Repeats list with 1 element x 4
- Examples:
• list1= [1,2,3]
• list2 = [0] * 4
• list3 = list1 * 5 #List with 15 elements: 3 elements x 5
• list4 = list2 * 2 #List with 8 elements: 4 elements x 2

• print(len(list3),len(list4))
• print(list3)
• print(list4)

James Tam

How To Avoid Overflowing 2D Lists

• Employ named constants

• Recall that the previous example declared 2 named constants.

MAX_COLUMNS = 5

MAX_ROWS = 3

• Control access to list elements using these constants.
r = 0

while(r < MAX_ROWS):

c = 0

while(c < MAX_COLUMNS):

print(aList[r][c], end = "")

c = c + 1

print()

r = r + 1

For 231

Composites: lists 23

James Tam

Creating And Initializing A Multi-Dimensional
List In Python: Dynamic Creation

General structure (Using
loops):
• Create a variable that refers to an

empty list

• Create list:
• One loop (outer loop) traverses the

rows.

• Each iteration of the outer loop creates
a new 1D list (empty at start)

•Then the inner loop traverses the
elements of the newly created 1D list
creating and initializing each element in
a fashion similar to how a single 1D list
was created and initialized (add to end)

• Repeat the process for each row in the
list

Rowr = 0

c=0 c=1 c=2 c=3

List ref

Rowr = 1

Rows

Etc.

[]

aGrid = []
for r in range (0, 3, 1):

aGrid.append ([])
for c in range (0, 3, 1):

aValue = <Some source>
aGrid[r].append(aValue)

James Tam

Repeating Just The Steps In The Code Creating The List

1. Create a variable that refers to an empty list
aGrid = []

2. Successively create rows in the list
for r in range (0,noRows,1):

aGrid.append ([])

3. Each row is a 1D list, add elements to the end of the 1D list (empty list
needed in #2 so that the append method can be called to add elements
to the end).

for c in range (0,noColumns,1):

aGrid[r].append("*")

- The [r] part of specifies which row the loop will add elements on the end.
aGrid[r].append("*")

Recall ‘append’ is unique
to a list. Append won’t
work if for something other
than a list but for a list
an empty row can have new
elements appended.
num = 123
num.append(4)

Composites: lists 24

James Tam

Example 2D List Program: A Variable Sized 2D
List (Dynamic)

•Name of the example program: 5variableSize2DList.py
aGrid = []

noRows = int(input("Number rows: "))

noColumns = int(input("Number columns: "))

#Create list

for r in range (0,noRows,1):

aGrid.append ([]) #Create empty row, add to list

for c in range (0,noColumns,1):

element = input("Type in a single character: ")

aGrid[r].append(element) #Add to the end of new row

#Display list

for r in range (0,noRows,1):

for c in range (0,noColumns,1):

print(aGrid[r][c], end="")

print()

James Tam

2D Lists: Using Append

table = [[0, 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

table.append([2,1,7]) #Where was the append occurring?

print(table)

table[3].append(3) #Where was the append occurring?

print(table)

#What element is the append applied to?

table[2][1].append(888)

Hint: add the following before the last instruction

print(table[2][1])

print(type(table[2][1]))

Final JT hint: Make
sure you apply the
right operation on the
right type of variable.

Composites: lists 25

James Tam

Lists: Final Notes

• Reminder: python list elements need not be all the same type.

• Python 2D lists need not be rectangular.

aList = [[1,True,"hi"],
[1,2.3],
[]]

Row index 0: int, bool, string

Row index 1: int, float

Row index 2: empty list

James Tam

After This Section You Should Now Know

• When to use lists of different dimensions.

• Basic operations on a 2D list.

• How to create a 2D list: fixed size and a variable sized list by
using the repetition operator.

• How to access a 2D list: the whole list, rows in the list and
individual elements.

• The use of a named constant to ensure that list boundaries
are adhered to.

• The ability to dynamically creating 2D lists using the append
function for both the rows and columns.

Composites: lists 26

James Tam

Copyright Notification

• Unless otherwise indicated, all images in this presentation
were provided courtesy of James Tam.

slide 51

