
Composites: dictionaries 1

James Tam

Composites, Dictionaries: Part 3

A composite type that employs a key and data value
pair to allow for more efficient retrievals of
elements.

FYI, Part 2 covered

arrays which will not be

included in the required

part of 217.

James Tam

Real Life Dictionary

• When using a dictionary one “looks up” the word in the
dictionary.

• The word provides the search parameter in order to retrieve
additional details.

Lookup key

Lookup value

Composites: dictionaries 2

James Tam

Real Life: Other Cases Of Looking Values Using A Key

• Workers: using the Social Insurance Number (key) to find
additional information about the person (data value).

• Students: using the student identification number (key) to find
student information such as: courses, grades, contact
information… (data values).

• ISBN: the unique identifier for a book (key) to find details
about the book such as: title, author, publisher… (data
values).

James Tam

Python Dictionaries

• Similar to lists, strings and arrays, a dictionary is a composite
type that can be decomposed into multiple parts.

• The curly braces specifies a dictionary.

• Each element needs a pair
- Key : data
• Key: an integer that uniquely identifies the element (don’t try to repeat keys).
• Data: the information that is stored for the element.

- Example: 111: Jim Tam, undeclared
• 111: the lookup key (in this case the student identification number)
• Jim Tam, undeclared: the data value for the element (in this case it’s the

information about the student).

• Individual elements are accessed via key not as a index from
zero to (size-1).

Composites: dictionaries 3

James Tam

Creating A Dictionary

• Format:
<dictionary name> = {<key1>:<value1>, <key2>:<value2>,
<key3>:<value3>,... <keyn>:<valuen>}

• Example:
students = {111:"James Tam,business,computer science",

250:"Jim Tam(Ace student,undeclared",
117:"Scott Bruce,business"}

aDictionary = {} #A reference to an empty dictionary

• Important details:
- Key: needs to be one: integer, bool, string, float – avoid the latter even

though it meets syntax requirements because of precision issues).
• Keys must be unique, repeating a key overwrites the previous value.

- Values aren’t limited.

James Tam

Accessing Dictionary Elements

• Single element
- Format:

<dictionary>[<key>]

- Example:
print(students[studentID])

• All elements
- Format:

for <key> in <dictionary>:

students[<key>]

- Example:
for aStudentID in students:

print(aStudentID,students[aStudentID])

Composites: dictionaries 4

James Tam

Dictionary Basics: Complete Example

• Name of the complete online example:
1dictonary_basics.py

students = {111:"James Tam,business,computer science",
250:"Jim Tam(Ace student,undeclared",
117:"Scott Bruce,business"}

studentID = 111
print(students[studentID])

print("Number of students %d" %(len(students)))

for aStudentID in students: #aStudentID=key
print("\t%d: %s" %(aStudentID,students[aStudentID]))

Unless the keys are a fixed ascending/descending sequence
a while-loop can't be used. Dictionary values are
retrieved through the keys not through an index from zero
to (size-1)

James Tam

Other Dictionary Operations

• Many list operations are possible with dictionaries

• Review of operations you just saw:
- Creating a new dictionary

- Access single element

- Stepping through all elements
• Getting a key for an element (needed for an assignment)

• Changing elements (to be covered in the next example)
1. Add/creating new element (no such key exists).

2. Update/modifying an existing element (key already exists).

3. Creating a dictionary dynamically via a loop (needed for an
assignment).

4. Deleting elements.

5. Checking for membership in the dictionary.

6. Clearing the dictionary (deleting the whole thing).

Composites: dictionaries 5

James Tam

Other Dictionary Operations: Complete Example

• Name of the full online example:
2creating_modifying_elements.py

scientists = {}
i = 1
size = 4
#3rd operation: Create dictionary dynamically via a loop
while(i <= size):

scientists[i] = "Scientist #" + str(i)
i = i + 1

size = size + 1
#1st operation: Add/create new element
scientists[size] = "Scientist #" + str(size)

#2nd operation: Change/modify existing element (key = 2)
scientists[2] = "James Tam"

James Tam

Other Dictionary Operations: Complete Example (2)

#New dictionary operation #4: Deleting element by key
del scientists[1]

#5th dictionary operation: Checking for membership
key = 1
if key in scientists:

print("Scientist with ID %d exists" %(key))
else:

print("No such scientist with ID %d" %(key))
key = 2
if key in scientists:

print("Scientist with ID %d exists" %(key))
else:

print("No such scientist with ID %d" %(key))

#6th dictionary operation: Clearing the whole dictionary
scientists.clear()

Composites: dictionaries 6

James Tam

Dictionary Key-Related Functions

Operation Examples (Zhao/Hudson) Description (students=dictionary)

List list(students.keys()) List all keys in dictionary

Sort sorted(students.keys()) Sort the dictionary by the keys

Keys students.keys() Get all the keys in the dictionary

Items students.items() Get all the items (key:values) in the

dictionary

Functions already covered

Operation Examples where it was covered

Access via key print("\t%d: %s" %(aStudentID,students[aStudentID]))

Membership if key in scientists:

Length print("Number of students %d" %(len(students)))

Clear scientists.clear()

Add / Create scientists[size] = "Scientist #" + str(size)

Delete del scientists[1]

James Tam

When Can Dictionaries Be Used?

• Composite data needs to be represented but one field
uniquely identifies the element (it becomes the key).
- Aforementioned examples: SIN, student identification number etc.

• The key is how the dictionary element is retrieved.

Composites: dictionaries 7

James Tam

Why Use Dictionaries Over Lists?

• Efficiency (quickly) of accessing elements.
- You will learn more about evaluating efficiency of your programs in CPSC

331 and in CPSC 413.

• To quickly access list elements it’s typically sorted.

• But the sorting operation takes time.
- And time is still required to access elements with a sorted list.

• Dictionaries use the programming technique called ‘hashing’
to allow for a fast lookup of the data values.
- You will learn details about hashing algorithms in CPSC 331 but briefly

the hashing maps the key to an index via the hashing function.

- Bottom line: rather than the lookup time be affected by the size of the
list (without hashing) the lookup time is a constant value.

James Tam

Implementation Of Dictionaries In Memory

• Similar to lists, creating a dictionary allocates a reference in
memory.
- These are references to an empty list and an empty dictionary

respectively.
aList = []
aDictionary = []

• Consequently “passing a dictionary” as a function parameter
is actually passing a reference to the dictionary (address of
the dictionary).

Composites: dictionaries 8

James Tam

After This Section You Should Now Know

• How to create a new dictionary using the methods covered.

• Valid data types for the key and data value parts of a
dictionary element.

• How to access keys and data values using the methods
covered.

• How to iterate through the elements in a dictionary.

• Other common operation: adding new elements, checking for
membership, clearing dictionary, deleting elements,
modifying existing elements.

• How changes to dictionaries made inside a function will
change the actual dictionary because references are
employed.

• When and why to use dictionaries

James Tam

Copyright Notification

• Unless otherwise indicated, all images in this presentation
were provided courtesy of James Tam.

slide 16

