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Exercise 1

• Define a class ‘Adventurer’ that consists of two attributes:
- Hit points: a whole number value.

- Name

• As instances of the class are created these attributes will be 
set to these initial values:
- Hit points are negative one.

- The name is “Nameless”

• Define and call a starting function.
- An instance of an adventurer will be created.

- The attributes will be displayed onscreen.
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Solution

class Adventurer:

def __init__(self):

self.name = -1

self.hitPoints = "Nameless"

def start():

anAdventurer = Adventurer()

print(anAdventurer.name,anAdventurer.hitPoints)

start()
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Common Mistakes: No Self In Class Methods

class Adventurer:

def __init__(self):

name = -1

hitPoints = "Nameless"

def start():

anAdventurer = Adventurer()

print(anAdventurer.name,anAdventurer.hitPoints)

start()

Logic errors: creates two 

locals rather than creating 

and initializing the 

attributes.

Syntax errors: refers to 

2 non-existent 

attributes.
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Common Mistakes: No Reference

class Adventurer:

def __init__(self):

self.name = -1

self.hitPoints = "Nameless"

def start():

anAdventurer = Adventurer()

print(name,hitPoints)

start() Syntax errors: leaving out the 

reference name before accessing the 

attribute (e.g. anAdventurer.name) 

means that name, hitPoints are 

accessed as locals or globals rather 

than as attributes of an object 
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Common Mistakes: No Self Parameter

class Adventurer:

def __init__():

self.name = -1

self.hitPoints = "Nameless"

def start():

anAdventurer = Adventurer()

start()
During every method call:

A reference to the object 

whose method is called is 

always passed as an 

argument. You must define 

a parameter in the method 

definition.


