
Command line arguments 1

James Tam

Exercise 1

• Define a class ‘Adventurer’ that consists of two attributes:
- Hit points: a whole number value.

- Name

• As instances of the class are created these attributes will be 
set to these initial values:
- Hit points are negative one.

- The name is “Nameless”

• Define and call a starting function.
- An instance of an adventurer will be created.

- The attributes will be displayed onscreen.



Command line arguments 2

James Tam

Solution

class Adventurer:

def __init__(self):

self.name = -1

self.hitPoints = "Nameless"

def start():

anAdventurer = Adventurer()

print(anAdventurer.name,anAdventurer.hitPoints)

start()



Command line arguments 3

James Tam

Common Mistakes: No Self In Class Methods

class Adventurer:

def __init__(self):

name = -1

hitPoints = "Nameless"

def start():

anAdventurer = Adventurer()

print(anAdventurer.name,anAdventurer.hitPoints)

start()

Logic errors: creates two 

locals rather than creating 

and initializing the 

attributes.

Syntax errors: refers to 

2 non-existent 

attributes.



Command line arguments 4

James Tam

Common Mistakes: No Reference

class Adventurer:

def __init__(self):

self.name = -1

self.hitPoints = "Nameless"

def start():

anAdventurer = Adventurer()

print(name,hitPoints)

start() Syntax errors: leaving out the 

reference name before accessing the 

attribute (e.g. anAdventurer.name) 

means that name, hitPoints are 

accessed as locals or globals rather 

than as attributes of an object 



Command line arguments 5

James Tam

Common Mistakes: No Self Parameter

class Adventurer:

def __init__():

self.name = -1

self.hitPoints = "Nameless"

def start():

anAdventurer = Adventurer()

start()
During every method call:

A reference to the object 

whose method is called is 

always passed as an 

argument. You must define 

a parameter in the method 

definition.


