
6/12/2023

Decomposition/functions 1

Extra Topics From CPSC 231:
O-O & Recursion

• Section I: Defining new types of variables
that can have custom attributes and
capabilities

• Section II: You will learn the definition of
recursion as well as seeing how simple
recursive programs work

Section I: Introduction To Object-
Oriented Programming

6/12/2023

Decomposition/functions 2

James Tam

Composites

• What you have seen
– Lists

– Strings

– Tuples

• What if we need to store information about an entity with
multiple attributes and those attributes need to be labeled?
– Example: Client attributes = name, address, phone, email

Some Drawbacks Of Using A List

• Which field contains what type of information? This isn’t
immediately clear from looking at the program statements.
client = [“xxxxxxxxxxxxxxx",

“0000000000",

“xxxxxxxxx",

0]

• Is there any way to specify rules about the type of information
to be stored in a field e.g., a data entry error could allow
alphabetic information (e.g., 1-800-BUY-NOWW) to be entered
in the phone number field.

The parts of a composite list can

be accessed via [index] but they

cannot be labeled (what do these

fields store?)

6/12/2023

Decomposition/functions 3

James Tam

New Term: Class

• Can be used to define a generic template for a new non-
homogeneous composite type.

• It can label and define more complex entities than a list.

• This template defines what an instance (example) of this new
composite type would consist of but it doesn’t create an
instance.

Copyright information unknown

James Tam

Classes Define A Composite Type

• The class definition specifies the type of information (called
“attributes”) that each instance (example) tracks.

Name:

Phone:

Email:

Purchases:

Name:

Phone:

Email:

Purchases:

Name:

Phone:

Email:

Purchases:

New term:
Attribute

6/12/2023

Decomposition/functions 4

Defining A Class1

• Format:
class <Name of the class>:

def __init__(self):

self.name of first field = <default value>

self.name of second field = <default value>

• Example (attributes clearer):
class Client:

def __init__(self):

self.name = "default"

self.phone = "(123)456-7890

Describes what information

that would be tracked by a

“Client” but doesn’t yet

create a client variable

Note the convention: The

first letter is capitalized.

• Defining a ‘client’ by using a list (# mapped to a attribute is
not self evident)
client = ["xxxxxxxxxxxxxxx",

"0000000000",
"xxxxxxxxx",
0]

1 Although capitalization of the class name isn’t the Python standard it is the standard with many other programming languages: Java, C++

Creating An Instance Of A Class

• Creating an actual instance (instance = object) is referred to as

• Format:
<reference name> = <name of class>()

• Example:
firstClient = Client()

instantiation

New terms:
• Instance
• Object

6/12/2023

Decomposition/functions 5

Defining A Class Vs. Creating An Instance Of That
Class

• Defining a class (~List type)
– A template that describes that

class: how many fields, what
type of information will be
stored by each field, what
default information will be
stored in a field.

• Creating an object (~creating
a new list)
– Instances of that class (during

instantiation) which can take
on different forms.

Image copyright unknown

Example:
class Client:

def __init__(self):
self.name = "default"
self.phone = "(123)456-7890

Example:
firstClient = Client()

Accessing And Changing The Attributes - Outside
Class Methods E.g. Inside Start()

•Format:
<reference name>.<field name> # Accessing value

<reference name>.<field name> = <value> # Changing value

•Example:
def start():

aClient.name = "James"

6/12/2023

Decomposition/functions 6

The Client List Example Implemented Using
Classes And Objects

• Name of the online example: 1client.py

class Client:

def __init__(self):

self.name = "default"

self.phone = "(123)456-7890"

self.email = "foo@bar.com"

self.purchases = 0

Exactly as-is i.e. no

spaces, 2 underscores

The Client List Example Implemented
Using Classes (2)

def start():

firstClient = Client()

firstClient.name = "James Tam"

firstClient.email = "tam@ucalgary.ca"

print(firstClient.name)

print(firstClient.phone)

print(firstClient.email)

print(firstClient.purchases)

start()

Changes 2 attributes:
name = "James Tam"
email = "tam@ucalgary.ca"

6/12/2023

Decomposition/functions 7

James Tam

Important Details

• Accessing attributes inside the methods of the class
class Client:

def __init__(self):

self.name = "default“

(More on the ‘self’ keyword later in

this section)

• Accessing attributes outside the methods in the body of the
class (e.g. start() function)
– Need to create a reference to the object first

firstClient = Client()

– Then access the object through that reference

firstClient.name = "James Tam"

self.<attribute name>

<Ref name> = <Class
name>()

<Ref name>.<attribute name>

What Is The Benefit Of Defining A Class?

• It allows new types of variables to be declared.

• The new type can model information about most any arbitrary
entity:
–Car

–Movie

–Your pet

–A bacteria or virus in a medical simulation

–A ‘critter’ (e.g., monster, computer-controlled player) a video game

–An ‘object’ (e.g., sword, ray gun, food, treasure) in a video game

–A member of a website (e.g., a social network user could have
attributes to specify the person’s: images, videos, links, comments and
other posts associated with the ‘profile’ object).

6/12/2023

Decomposition/functions 8

What Is The Benefit Of Defining A Class (2)

• Unlike creating a composite type by using a list a
predetermined number of fields can be specified and those
fields can be named.
– This provides an error prevention mechanism

class Client:

def __init__(self):

self.name = "default"

self.phone = "(123)456-7890"

self.email = "foo@bar.com"

self.purchases = 0

firstClient = Client()

print(firstClient.middleName) #Error: no such field defined

Classes Have Attributes

ATTRIBUTES
Name:
Phone:
Email:
Purchases:

BEHAVIORS
Open account
Buy investments
Sell investments
Close account

Image of James curtesy of James
Tam

But Also Behaviors

A client

6/12/2023

Decomposition/functions 9

New Term: Class Methods (“Behaviors”)

• Functions: not tied to a composite type or object
– The call is ‘stand alone’, just name of function

– E.g.,

– print(), input()

• Methods: must be called through an instance of a composite1.
– E.g.,

aList = []

aList.append(0)

• Unlike these pre-created functions, the ones that you associate
with classes can be customized to do anything that a regular
function can.

• Functions that are associated with classes are referred to as
methods.

List reference

Method operating on
the list

1 Not all composites have methods e.g., arrays in ‘C’ are a composite but don’t have methods

James Tam

Defining Class Methods

Format:
class <classname>:

def <method name> (self, <other parameters>):

<method body>

Example:
class Person:

def __init__(self):

self.name = "I have no name :("

def sayName (self):

print ("My name is...", self.name)

Unlike functions, every

method of a class must

have the ‘self’ parameter

(more on this later)

Reminder: When the attributes are

accessed inside the methods of a

class they MUST be preceded by the

suffix “.self”

New term: class
method

6/12/2023

Decomposition/functions 10

James Tam

Defining Class Methods: Full Example

• Name of the online example: 2personV1.py
class Person:

def __init__(self):

self.name = "I have no name :("

def sayName(self):

print("My name is...", self.name)

def start(): #Access outside class requires a reference

aPerson = Person()

aPerson.sayName()

aPerson.name = "Big Smiley :D"

aPerson.sayName()

start()

James Tam

Object-Oriented Design: Advantage Over Procedural
Decomposition

• Procedural approach: functions can allow for nonsensical
behaviors e.g. “flying pigs”

• E.g.

def fly():

...

pigs = list["pig1","pig2"]
fly(pigs)

6/12/2023

Decomposition/functions 11

James Tam

Recall: Objected Approach Ties Behaviors
(Functions/Methods) To Classes

• Definition of a class (in this example it’s the parent whose
methods are available to classes that are derived from this
class)
class Flyer():

def fly(self):

….

• Via inheritance: class definitions be extended by specifying
that ‘child’ classes (derived from the parent) inherit (are able
to access) the attributes and methods of the parent.
class Airplane(Flyer):

In python this allows
an Airplane object to

‘fly’

Alternative example: Java
public class Airplane extends
Flyer
{

}

James Tam

Simple Python Example Implementing Inheritance

• Name of the online example: 3inheritance
– Derived child class access parent’s attributes/methods

class Parent():

def __init__(self):

self.a = 1

self.b = 2

def display(self):

print(self.a,self.b)

class Child(Parent): #Can access Parent’s attributes/methods

def __init__(self):

super().__init__()

super().display()

self.c = "Attribute is unique to child"

def displayUnique(self):

print(self.c)

6/12/2023

Decomposition/functions 12

James Tam

Simple Python Example Implementing Inheritance (2)

def start():

print("Parent")

aParent = Parent()

aParent.display()

print(aParent.a,aParent.b)

print("\nChild")

aChild = Child()

aChild.display()

print(aChild.a,aChild.b,aChild.c)

#Error: parent has no such attribute print(aParent.c)

#Error: parent has no such method aParent.displayUnique()

start()

James Tam

After This Section You Should Now Know

• How to define an arbitrary composite type using a class
– Attributes and methods are bundled with (‘encapsulated’ into the class

definition)

• What are the benefits of defining a composite type by using a
class definition over using a list

• How to create instances of a class (instantiate)

• How to access and change the attributes (fields) of a class

• How to define methods/call methods of a class

• How inheritance can allow access to group of derived classes.
– The attributes and methods defined in the parent class can be accessed

in the child class/classes.

6/12/2023

Decomposition/functions 13

Section II: Introduction To
Recursion

James Tam

Basic Definition Of Recursion

• “A programming technique whereby a function calls itself

either directly or indirectly.”

6/12/2023

Decomposition/functions 14

Direct Call

function

def fun ():

…

fun ()

…

Indirect Call

f1

f2

6/12/2023

Decomposition/functions 15

Indirect Call

f1

f2

f3

…

fn

Indirect Call (2)

Name of the online example: 1simpleRecursive.py

def fun1():

fun2()

def fun2():

fun1()

fun1()

6/12/2023

Decomposition/functions 16

Requirements For Sensible Recursion

1) Base case

2) Progress is made (towards the base case)

sum (2)

if (2 == 1)

return 1

sum (3)

if (3 == 1)

return 1

Example Program: 2sumSeries.py
def sum(no):

if (no == 1):
return 1

else:
return (no + sum(no-1))

def start():
last = input ("Enter the last

number: ")
last = (int)last
total = sum(last)
print ("The sum of the series

from 1 to", last, "is",
total)

start()

sumSeries

total = sum(3)

F

else

return (3 + sum (3 – 1))

F

else

return (2 +sum (2 – 1));

sum (1)

if (1 == 1)

return 1

T

1

3

6

6/12/2023

Decomposition/functions 17

When To Use Recursion

• When a problem can be divided into steps.

• The result of one step can be used in a previous step.

• There is a scenario when you can stop sub-dividing the
problem into steps (step = recursive call) and return to a
previous step.
– Algorithm goes back to previous step with a partial solution to the

problem (back tracking)

• All of the results together solve the problem.

When To Consider Alternatives To Recursion

• When a loop will solve the problem just as well

• Types of recursion (for both types a return statement is
excepted)
– Tail recursion

• The last statement in the function is another recursive call to that function
This form of recursion can easily be replaced with a loop.

– Non-tail recursion

• The last statement in the recursive function is not a recursive call.

• This form of recursion is very difficult (read: impossible) to replace with a loop.

6/12/2023

Decomposition/functions 18

Example: Tail Recursion

• Tail recursion: A recursive call is the last statement in the
recursive function.

• Name of the online example: 3tail.py

def tail(no):

if (no <= 3):

print (no)

tail(no+1)

return()

tail(1)

Example: Non-Tail Recursion

• Non-Tail recursion: A statement which is not a recursive call to
the function comprises the last statement in the recursive
function.

• Name of the online example: 4nonTail.py

def nonTail(no):

if (no < 3):

nonTail(no+1)

print(no)

return()

nonTail(1)

6/12/2023

Decomposition/functions 19

James Tam

Error Handling Example Using Recursion

• Name of the online example: 5errorHandling_Loop.py

– Iterative/looping solution (month must be between 1 – 12)

month = -1

while ((month < 1) or (month > 12)):

month = int(input("Enter birth month (1-12): "))

James Tam

Error Handling Example Using Recursion (2)

– Name of the online example:
6errorHandling_Recursive.py

– Recursive solution (day must be between 1 – 31)

def promptDay():

day = int(input("Enter day of birth (1-31): "))

if ((day < 1) or (day > 31)):

day = promptDay()

return(day)

day = promptDay()

print(day)

6/12/2023

Decomposition/functions 20

James Tam

When To Use Iteration Or Recursion

• Rule of thumb for using iteration: if you can implement a
solution using a loop then you should do so.

• When to employ a recursive solution: a loop cannot be
employed.
– “Back tracking” is needed.

– Back tracking: When the repetition (whether via the iterations of a loop
or a function calling itself over and over) ends the actual work of solving
the problem occurs.

– Examples: Traversing a maze, traversing a file system (folders/directories
containing other folders).

James Tam

• Picked the wrong direction in the maze?

• After repeatedly traversing the maze (going up, left, right,
down) and you hit a dead end!

• You must “back track” (retrace your steps)

Applying Recursion: Traversing A Maze

6/12/2023

Decomposition/functions 21

Applying Recursion: Traversing A Directory/Folder
Structure (Chart: James Tam)

Folder

Storage
drive

1

File

Folder

2

File

No more folders: Stop
function calls and
return to previous time
function was called

Pseudo code
traverse(folder reference)

If (reference leads a folder)
traverse(go to left folder)
traverse(go to the right folder)

end if
return()

Folder

3

File File

3 4

5

6 7

Etc.

File

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

