
5/29/2022

Composites 1

Composite Types, Lists Part 1

• Style: avoiding list bound exceptions (overflow)

• Declaring a list variable

• Accessing a list vs the elements in the list

• Passing lists as parameters

• A new method of parameter passing: pass by
reference

Types Of Variables

Python

variables

1. Simple

(atomic)

integer boolean float

2. Aggregate

(composite)

Lists Tuples Strings

Example Simple type

A variable containing the

number 707 can’t be

meaningfully

decomposed into parts

Example composite
A string (sequence of
characters) can be
decomposed into
individual characters.

5/29/2022

Composites 2

List

• In many programming languages a list is implemented as an
array.
– This will likely be the term to look for if you are looking for a list-

equivalent when learning a new language (i.e. beyond python).

• Python lists have many of the characteristics of the arrays in
other programming languages but they also have other
features.

Example Problem

• Write a program that will track the percentage grades for a
class of students. The program should allow the user to enter
the grade for each student. Then it will display the grades for
the whole class along with the average.

5/29/2022

Composites 3

Why Bother With A List?

• Name of the example program: 0classListV1.py

– Learning: a “how not to” approach for a solution that should employ
lists.

CLASS_SIZE = 5

stu1 = float(input("Enter grade for student no. 1: "))

stu2 = float(input("Enter grade for student no. 2: "))

stu3 = float(input("Enter grade for student no. 3: "))

stu4 = float(input("Enter grade for student no. 4: "))

stu5 = float(input("Enter grade for student no. 5: "))

Why Bother With A List? (2)

total = stu1 + stu2 + stu3 + stu4 + stu5
average = total / CLASS_SIZE

print()
print("GRADES")
print("The average grade is %0.2f%%", %(average))
print("Student no. 1: %0.2f", %(stu1))
print("Student no. 2: %0.2f", %(stu2))
print("Student no. 3: %0.2f", %(stu3))
print("Student no. 4: %0.2f", %(stu4))
print("Student no. 5: %0.2f", %(stu5))

5/29/2022

Composites 4

Why Bother With A List? (3)

total = stu1 + stu2 + stu3 + stu4 + stu5
average = total / CLASS_SIZE

print()
print("GRADES")
print("The average grade is %0.2f%%", %(average))
print("Student no. 1: %0.2f", %(stu1))
print("Student no. 2: %0.2f", %(stu2))
print("Student no. 3: %0.2f", %(stu3))
print("Student no. 4: %0.2f", %(stu4))
print("Student no. 5: %0.2f", %(stu5))

NO!

What Were The Problems With
The Previous Approach?

• Redundant statements.

• Yet a loop could not be easily employed given the types of
variables that you have seen so far.

5/29/2022

Composites 5

What’s Needed: A List

• A composite variable that is a collection of another type.
–The composite variable can be manipulated and passed throughout the

program as a single entity:

• Use the name of the “list variable”

• Example:

aList = [1,2,3]

print(aList)

–At the same time each element can be accessed individually:
• Use the name of the list variable and an index.

• Example:

Print(aList[i])

Creating A List (Fixed Size)

•Format (‘n’ element list):

<list_name> = [<value 1>, <value 2>, ... <value n>]

Example:
#List with 5 elements, index ranges from 0 to (5-1)

percentages = [50.0, 100.0, 78.5, 99.9, 65.1]

Other Examples:
letters = ["A", "B", "A"]

names = ["The Borg", "Klingon ", "Hirogin", "Jem’hadar"]

Element 0 Element 1 Element n-1

0 1 2 3 4

1 These 4 names (Borg, Klingon, Hirogin, Jem’hadar)  are CBS

5/29/2022

Composites 6

Creating A List (Fixed Size, Same Data In Each
Element)

•Format (‘n’ element list, n >= 1):

<list_name> = [<element data>] * <n>

Examples:

aList1 = [" "] * 7

Assume the constant has been declared

aList2 = [-1] * NUMBER_ELEMENTS

James Tam

Accessing A List

• Because a list is composite you can access the entire list or
individual elements.

percentages = [50.0, 100.0, 78.5, 99.9, 65.1]

• Name of the list accesses the whole list
print(percentages)

• Name of the list and an index “[index]”accesses an element
print(percentages[1])

List

Elements

5/29/2022

Composites 7

James Tam

Negative Indices

• Although Python allows for negative indices (-1 last element, -2
second last…-<size>) this is unusual and this approach is not
allowed in other languages.

• So unless otherwise told your index should be a positive
integer ranging from <zero> to <list size – 1>

• Don’t use negative indices.

Revised Version Using A List

•Name of the example program: 1classListV2.py
– Learning: an alternative implementation that illustrates the advantages

of using a list. Can access individual elements as well as the entire list.

CLASS_SIZE = 5

def initialize():

classGrades = [-1] * CLASS_SIZE

return(classGrades)

5/29/2022

Composites 8

Revised Version Using A List (2)
def read(classGrades):

total = 0

average = 0

for i in range (0, CLASS_SIZE, 1):

temp = i + 1

print("Enter grade for student no.", temp, ":")

classGrades[i] = float(input (">"))

total = total + classGrades[i]

average = total / CLASS_SIZE

return(classGrades, average)

classGrades

[0]

[1]

[2]

-1

-1

-1

[3] -1
[4] -1

After ‘initialize’: before loop

i = 0

temp 1

average

0total

0

Current grade
i = 1

100100

100

2

80

80 180
i = 2

3

50

230

i = 3

4

70

50

70

300

i = 4

5

100

100

400

Loop ends now (Recall:
CLASS_SIZE = 5)80

James Tam

Revised Version Using A List (3)

def display(classGrades, average):

print()

print("GRADES")

print("The average grade is %0.2f%%" %(average))

for i in range (0, CLASS_SIZE, 1):

temp = i + 1

print("Student No. %d: %0.2f%%"

%(temp,classGrades[i]))

5/29/2022

Composites 9

James Tam

Revised Version Using A List (4)

def start():

classGrades = initialize()

classGrades, average = read(classGrades)

display(classGrades,average)

start()

Creating A List (Variable Size)

• Step 1: Create a variable that refers to the list (list is empty)

• Format:
<list name> = []

• Example:
classGrades = []

5/29/2022

Composites 10

Creating A List (Variable Size: 2)

• Step 2: Initialize the list with the elements

• General format:
– Within the body of a loop create each element and then add the new

element on the end of the list (‘append’)

James Tam

Creating A Variable Sized List: Example

classGrades = []

for i in range (0, 4, 1):

Each time through the loop: create new element = -1

Add new element to the end of the list

classGrades.append(-1)

classGrades

Before loop
(empty list)

classGrades

i = 0

[0] -1

classGrades

i = 1

[0] -1
[1] -1

classGrades

i = 3

[0]

[1]

[2]

-1

-1

-1
[3] -1

classGrades

i = 2

[0]

[1]

[2]

-1

-1

-1

5/29/2022

Composites 11

Further Revised Version Using A Dynamically
Created List

•Name of the example program: 2classListV3.py
– Learning: creating a list dynamically (one element at a time rather than

all at once).

CLASS_SIZE = 5

def initialize(): #This is the only function that differs

classGrades = []

for i in range (0, CLASS_SIZE, 1):

classGrades.append(-1)

return(classGrades)

James Tam

More Details On Lists

• With the simple variable types (integer, float, boolean)
you can think of as a single memory location.
– E.g.

age = 37

cool = False

• Declaring a list variable will result in two memory
locations allocated in memory.
– One location is for the list itself (“The multi-suite building”)

– Another location “refers to” or contains the address of the
building.

age 37

cool False

123

123 Sesame St.

5/29/2022

Composites 12

James Tam

Example: Illustrating List References

• Name of the example program: 3listReferences.py

num = 123

list1 = [1,2,3]

list2 = list1

List1[0] = 888

List2[2] = 777

print(list1)

print(list2)

One Part Of The Previous Example Was Actually
Unneeded

def read(classGrades):

: :

return(classGrades, average)

When list is passed

as a parameter…

…returning the list is likely not

needed

More details on ‘why’ coming up shortly!

5/29/2022

Composites 13

James Tam

Passing A List As A Parameter

• A reference to the list is passed, in the function a local
variable which is another reference can allow access to the
list.
– Recall: a reference ~a piece of paper containing an address so this is like

having two “pieces of paper” that refer to the same address.

• Example:
def read(classGrades):

...

for i in range (0, CLASS_SIZE, 1):

temp = i + 1

print("Enter grade for student no.", temp, ":")

classGrades[i] = float(input (">"))

total = total + classGrades[i]

def start():

classGrades = initialize()

read(classGrades)

James Tam

Example: Passing Lists As Parameters

• Name of the example program:
4listParametersPassByReference.py

– Learning : a list parameter allows changes to the original list (persist
even after the function ends).

def fun1(aListCopy):

aListCopy[0] = aListCopy[0] * 2

aListCopy[1] = aListCopy[1] * 2

return(aListCopy)

def fun2(aListCopy):

aListCopy[0] = aListCopy[0] * 2

aListCopy[1] = aListCopy[1] * 2

5/29/2022

Composites 14

James Tam

Example: Passing Lists As Parameters (2)

def start():

aList = [2,4]

print("Original list in start() before function

calls:\t", end="")

print(aList)

aList = fun1(aList)

print("Original list in start() after calling fun1():\t",

end="")

print(aList)

fun2(aList)

print("Original list in start() after calling fun2():\t",

end="")

print(aList)

start()

James Tam

Passing References (Lists): “Pass-By-Reference”

• Recall: A list variable is actually just a reference to a list (~a
paper with an address written on it).
aList = [1,2,3]

• A copy of the address is passed into the function (~copying
what’s on the paper)
def fun(copyList):

copyList[0] = 10

• The local reference ‘refers’ to the original list (thus the term
‘pass-by-reference).
– Use the paper to go to the specified address.

The list (no name just
a location in memory)

Reference to the list
(contains the memory
address)

5/29/2022

Composites 15

James Tam

Passing References: Don’t Do This

• When passing parameters never (or at least almost never)
assign a new value to the reference.

• Example
def fun(aReference):

Don’t do, creates a new list, didn’t change the

original list

aReference = [3,2,1]

def start():

aReference = [1,2,3]

fun(aReference)

print(aReference)

• Recall: Assignment and using square brackets creates a new list
aList = [1,2,3] # Fixed size list, 3 elements

aList = [] # Empty list

James Tam

Passing Parameters Which Aren’t Lists (Pass By Value)

• A copy of the value stored in the variable is passed into the
function.

• Changes made to the parameters are only made to local
variables.

• The changed local variables must have their values back to the
caller in order to be retained.

5/29/2022

Composites 16

Example: Passing By Value

• Name of the example program:
5otherParametersPassByValue.py

– Learning: how simple types (integer, float, Boolean) are passed by value
(value copied into a local variable)

def fun1(aNum,aBool):

aNum = 21

aBool = False

print("In fun1:", aNum,aBool)

def fun2(aNum,aBool):

aNum = 21

aBool = False

print("In fun2:", aNum,aBool)

return(aNum,aBool)

James Tam

Example: Passing By Value (2)

def start():

aNum = 12

aBool = True

print("In start:", aNum,aBool)

fun1(aNum,aBool)

print("After fun1:", aNum,aBool)

aNum,aBool = fun2(aNum,aBool)

print("After fun2:", aNum,aBool)

start()

5/29/2022

Composites 17

James Tam

Why Are References Used?

• It looks complex

• Most important reason why it’s done: efficiency
– Since a reference to a list contains the address of the list it allows access

to the list.

– As mentioned if the list is large and a function is called many times the
allocation (creation) and de-allocation (destruction/freeing up memory
for the list) can reduce program efficiency.

• Type size of references ~range 32 bits (4 bytes) to 64 bits (8
bytes)

• Contrast this with the size of a list
– E.g., a list that refers to online user accounts (each account is a list

element that may be multi-Giga bytes in size).

– Contrast passing an 8 byte reference to the list vs. passing a multi-
Gigabyte list.

James Tam

“Simulation”: What If A List And Not A List Reference
Passed: Creating A New List Each Function Call

• Name of example program: 6listExampleSlow.py
– Learning: approximating the speed difference between passing by value

vs. passing by reference (simulated pass by value)

ONE_HUNDRED_MILLION = 100000000

def fun(i):

print("Number of times function has been called #%d"

%(i))

aList = ["*"] * ONE_HUNDRED_MILLION

def start():

for i in range (0,ONE_HUNDRED_MILLION,1):

fun(i)

start()

5/29/2022

Composites 18

James Tam

Passing Reference And Not Entire List

• Name of example program: 7listExampleFast.py
– Learning: approximating the speed difference between passing by value

vs. passing by reference (actual pass by reference)

ONE_HUNDRED_MILLION = 100000000

def fun(aList,num):

print("fun #%d" %num)

def start():

aList = ["a"]* ONE_HUNDRED_MILLION

for i in range(0,ONE_HUNDRED_MILLION,1):

fun(aList,i)

start()

Take Care Not To Exceed The Bounds Of The List

[0]

[1]

[2]

[3]

list OK

OK

OK

OK

???

Example: 8listBounds.py
num1 = 7

list = [0, 1, 2, 3]

num2 = 13

for i in range (0, 4, 1):

print (list [i])

print()

print(list [4]) ???

RAM

num1 7

num2 13

5/29/2022

Composites 19

A Common Way To Avoid Overflowing A List

• Use a constant in conjunction with the list.
SIZE = 100

• The value in the constant controls traversals of the list
for i in range (0, SIZE, 1):

myList[i] = int(input ("Enter a value:"))

for i in range (0, SIZE, 1):

print(myList [i])

A Common Way To Avoid Overflowing A List (2)

• Use a constant in conjunction with the list.
SIZE = 100000

• The value in the constant controls traversals of the list
for i in range (0, SIZE, 1):

myList [i] = int(input ("Enter a value:"))

for i in range (0, SIZE, 1):

print (myList [i])

5/29/2022

Composites 20

James Tam

A Python Specific Approach To Avoid Overflow

• Use the length function len to get the length of list.
– Since a function call requires some resources/time it’s a bit more

efficient to store the length in a variable.

– Unless the length of the list changes refer to the variable rather than
calling function again.

• Example:
myList = someFunctionCreatesList()

myListLength = len(myList)

i = 0

while (i < myListLength):

print(myList[i])

After This Section You Should Now Know

• Techniques to avoid overflowing the bounds of a list

• The difference between a simple vs. a composite type

• Why and when a list should be used

• How to create and initialize a list (each element can be
different or is identical)

• How to access or change the elements of a list

• The difference between the parameter passing mechanisms:
pass by value vs. pass by reference
– How are lists passed as parameters

