Composites

Composite Types, Lists Part 2

* When to use multi-dimensional lists
* Creating 2D lists
* How to access a 2D list and its parts

* Basic 2D list operations: display, accessing parts,
copying the list

* Using named constants to stay within list bounds
* Dynamically creating 2D lists with the append function

When To Use Lists Of Different Dimensions

* It’s determined by the data —the number of categories of information
determines the number of dimensions to use.
* Examples:
e (1D list)
—Tracking grades for a class (previous example)
—Each cell contains the grade for a student i.e., grades[i]

—There is one dimension that specifies which student’s grades are being
accessed

One dimension (which student)

e (2D list)
—Expanded grades program (table: grades for multiple lectures)

—Again there is one dimension that specifies which student’s grades are being
accessed

—The other dimension can be used to specify the lecture section

5/28/2023

Composites

When To Use Lists Of Different Dimensions (2)

* (2D list continued)

Lecture
Section

Student

First Second | Third
student |student |student

LO1

LO2

LO3

LO4

LO5

LON

When To Use Lists Of Different Dimensions (3)

* (2D list continued)
* Notice that each row is merely a 1D list

* (A 2D listis a list containing rows of 1D lists)

(]
(1
(2]
(3]
(4]
(5]
(6]

Columns (e.g. grades)
A

- (0]

(1]

(2]

Lo1

L02

LO3

LO4

LO5

LO6

LO7

Important:

* List elements are

specified in the order of
[row] [column]

+ Specifying only a single

set of brackets
specifies the row

Rows
(e.g.
lecture
section)

5/28/2023

Composites

Creating And Initializing A Multi-Dimensional
List In Python (Fixed Size During Creation)

General structure

<list_name> = [[<value 1>, <value 2>, ... <value n>],
[<value 1>, <value 2>, ... <value n>],
Rows
[<value 1>, «<value 2>, ... <value n>]]
N ~ J
Columns

Creating And Initializing A Multi-Dimensional List In
Python (2): Fixed Size During Creation
Name of the example program: 1display2DList.py

Learning: creating, displaying a fixed size 2D list
table = [[0, 0, 0],

[1, 1, 1], ree
(2, 2, 21, ...
[3, 3, 31]

for r in range (0, 4, 1)ir =3
print (table[r]) #Each call to print displays a 1D list

for r in range (0,4,1): (col)
for c in range (0,3,1): r=o (MU
print(table[r][c], end="") r=1
print() r=2
#Displays a list element r=3

print(table[2][@]) #Displays 2 not ©

5/28/2023

Composites

2D Lists: Levels Of Access

table = [[0, 0, @],
[1, 1, 1],
[2, 2, 2],
[3, 3, 3]]
print(table) #Entire list
print(table[0]) #First row

print(table[3][1]) #4t" row, 2" column
print(table[0][0][©]) #What does this do?

TypeError: "int' object is not subscriptable

table = [[["a","b"], @, @],
[1, 1, 1],
[2, 2, 21,
[3, 3, 3]]

print(table[0][@][©]) #Now what does this do?

James Tam

Creating 2D Lists Via The Repetition Operator

Name of the example program:
2creatinglistViaRepetition.py

Learning: creating a variable sized 2D list using the repetition
operator

MAX_COLUMNS = 5

MAX_ROWS = 3
ELEMENT = "*"
aList = []
r=20

while (r < MAX_ROWS):
templList = [ELEMENT] * MAX_COLUMNS
alList.append(tempList)
r=r+1

James Tam

5/28/2023

Composites

How To Avoid Overflowing 2D Lists

* Employ named constants

* Recall that the previous example declared 2 named constants.
MAX_COLUMNS = 5
MAX_ROWS = 3

* Control access to list elements using these constants.
r=20
while (r < MAX_ROWS):

c=20

while (c < MAX_COLUMNS):
print(aList[r][c], end = "")
c=c+1

print()

r=r+1

James Tam

Copying Lists

* Important: A variable that appears to be a list is really a
reference to a list.
— Recall: the reference and the list are two separate memory locations!
matrix = [[0, @, @],
[1, 1, 1],
[2, 2, 2],
[3, 3, 3]]
— Wrong way to ‘copy’ a 2D list
alistl = alist2 (Whyis this wrong? Hint: recall what is stored in
aListlandalistl)

James Tam

5/28/2023

Composites

Copying Lists: Example

* Name of the example program: 3copyinglListsBothWays.py

* This is the wrong way. 4 EYI:
def create():

aGridl = create() i R
aGrid2 = aGridi [****]
aGrid1[3][3] = "!" [ron, ok e k]
print("First list") return(aGrid)
display(aGridl)
print("Second list")
display(aGrid2)

James Tam

New Terminology

* Shallow copy: copies what’s stored in the reference (location

of a list).

Code
alistl = [1,2,3]
alist2 =alistl

alistl——[1, 2, 3]

alist2 /

* Deep copy: copies the data from one list to another.
— Create a new list e.g. aList2 = [0]*3

— Copy each piece of data (list elements) from one list to another e.g.
aList2[@] = alListl[Q]
alistl——[1, 2, 3]

alist2—10, 0, 0]

James Tam

5/28/2023

Composites

Copying Lists: Example (2)

* Thisis the
aGridl = create()
aGrid2 = create()
copy(aGridl,aGrid2)

def copy(destination,source):
for r in range (0,SIZE,1):
for c in range (0,SIZE,1):

copy(aGridl,aGrid2)

aGridif[e][e] "?" #These statements prove there’s two lists
aGrid1[3][3] A

print("First list")

display(aGridl)

print("Second list")

display(aGrid2)

James Tam

Copying Lists: Write The Code Yourself

* For this class you should not use some else’s pre-created list
copy method (e.g. those defined when you “import copy”)

* Not all programming languages have this capability (you will
need to know how to do it yourself).

* Writing the code yourself will provide you with extra practice
and help you become more familiar with list (in other
languages ‘array’) operations.

James Tam

5/28/2023

Composites

Boundary Checking Lists

* Checking if a particular location (row, column) for a 2D list
common program task.

A B C D E F G H | J K
0 1 2 3 4 5 6 7 8 9

o
WK NG N AW N RS

14 A location inside the list

* Rather than repeating the check it may be more efficient to
write one Boolean function to implement this task.

James Tam

Boundary Checking Lists (2)

* Name of the example: 4boundary_checking
SIZE = 4
FIELD = " "
FOREST = "A"
WATER = "W"
BURNT = "F"
ERROR = "!"

def display(world):

r=-1

c=-1

for r in range (0,SIZE,1):
for ¢ in range (0,SIZE,1):

print(world[r][c], end="")

print()

print()

James Tam

5/28/2023

Composites

Boundary Checking Lists (3)

def editLocation(row,column,world):
world[row][column] = "I"

def generateElement(randomNumber):

element = ERROR

if ((randomNumber >= 1) and (randomNumber <= 50)):
element = FIELD

elif ((randomNumber >= 51) and (randomNumber <= 80)):
element = FOREST

elif ((randomNumber >= 81) and (randomNumber <= 100)):
element = WATER

else:
element = ERROR

return(element)

James Tam

Boundary Checking Lists (4)

def getlLocation():

outOfBounds = True

row = -1

column = -1

while (outOfBounds == True):
print("Enter location of square to change to a !")
row = int(input("Enter a row (0-4): "))
column = int(input("Enter a column (©-4): "))
outside = isOut(row,column)

if (outside == True):
print("Row=%d, Col=%d" %(row,column), end = " ")
print("is outside range of ©-" + str(SIZE) + ".")
else:

outOfBounds = False
return(row,column)

James Tam

5/28/2023

Composites

Boundary Checking Lists (5)

def initialize():

world = []

r=-1

c=-1

randomNumber = -1

newElement = ERROR

for r in range (0,SIZE,1):
randomNumber = random.randrange(1,101)
element = generateElement(randomNumber)
tempRow = [element] * SIZE
world.append(tempRow) # Add in new empty row
print(tempRow)

return(world)

James Tam

Boundary Checking Lists (6)

def isOut(row,column):
outside = False
if ((row < @) or \
(row >= SIZE) or \
(column < @) or \
(column >= SIZE)):
outside = True
return(outside)

James Tam

5/28/2023

10

Composites

Boundary Checking Lists (7)

def start():

stillRunning = True

answer = ""

row = -1

column = -1

world = initialize()

while(stillRunning): #while(stillRunning == True):
display(world)
row,column = getLocation()
editLocation(row,column,world)
answer = input("Hit enter to continue,'q' to quit: ")
if ((answer == "q") or (answer == "Q")):

stillRunning = False

start()
James Tam
Creating And Initializing A Multi-Dimensional
List In Python: Dynamic Creation
General structure (Using
List ref
loops):
. [] c=0 c=1 =2 c=3
* Create a variable that refers to an
. r=e | Row |
empty list
* Create list: r=1 | Row |
* One loop (outer loop) traverses the Lo | Row |
rows.
« Each iteration of the outer loop creates
a new 1D list (empty at start)
*Then the inner loop traverses the Etc.
columns of the newly created 1D list
creating and initializing each element in , - aGrid = [1]
a fashion similar to how a single 1D list 7 *for r in range (@, 3, 1):
was created and initialized (add to end) (aGrid.append ([])
* Repeat the process for each row in Y for c in range (0, 3, 1):
the list . aValue = <Some source>
N aGrid[r].append(avValue)

5/28/2023

11

Composites

Repeating Just The Steps In The Code Creating The List

1. Create avariable that refers to an empty list
aGrid = []

Recall ‘append’ is unique to
a list. This won’t work but an
empty row can have new

2. Successively create rows in the list elementsappended.
for r in range (©,noRows,1): num = 123
aGrid.append ([]) num.append(4)

3. Eachrowisa 1D list, add elements to the end of the 1D list (empty list
needed in #2 so that the append method can be called to add elements
to the end).

for ¢ in range (@,noColumns,1):
aGrid[r].append("*")

— The [r] part of specifies which row the loop will add elements on the end.
aGrid[r].append("*")

James Tam

Example 2D List Program: A Variable Sized 2D
List (Dynamic)

*Name of the example program: 5variableSize2DList.py
aGrid = []
noRows = int(input("Number rows: "))
noColumns = int(input("Number columns: "))
#Create list
for r in range (©,noRows,1):

aGrid.append ([])

for ¢ in range (@,noColumns,1):

aGrid[r].append("*")

#Display list
for r in range (©,noRows,1):

for ¢ in range (0,noColumns,1):

print(aGrid[r][c], end="")
print()

5/28/2023

12

Composites

Extra Practice

List operations:

— For a numerical list: implement some common mathematical functions
(e.g., average, min, max, mode — last one is challenging).

— For any type of list: implement common list operations (e.g., displaying
all elements one at a time, inserting elements at the end of the list,
insert elements in order, searching for elements, removing an element,
finding the smallest and largest element).

* In order to develop your programming skills you should write the code

yourself rather than using predefined python methods such as append, min,
max etc.

After This Sub-Section You Should Now Know

* When to use lists of different dimensions

* Basic operations on a 2D list

* How to create a 2D list: fixed size and a variable sized list by
using the repetition operator.

* How to access a 2D list: the whole list, rows in the list and
individual elements.

* How to properly copy the contents of a 2D list into another 2D
list as well as a common mistake when copying lists.

* The use of a named constant to ensure that list boundaries are

adhered to.

* The ability to dynamically creating 2D lists using the append
function for both the rows and columns.

5/28/2023

13

