
User friendly design via Nielson’s Usability Heuristics 1

James Tam

CPSC 217,
Loops In Python: Part 3

In this section you will learn some usability
heuristics which can be used to design more
user-friendly systems. (Coverage depends upon
time constraints).

JT’s note: in the interests of time

this section will not be covered

during the live lecture. Instead

you can get the lecture content

via a pre-recorded video in D2L

under ‘Lectures’ under the

appropriate week’s material.

James Tam

Why This Section Is Needed: Not So Friendly
Examples Exist!

User friendly design via Nielson’s Usability Heuristics 2

James Tam

Some Heuristics (Rules Of Thumb) For
Designing Software

•(The following list comes from Jakob Nielsen’s 10 usability
heuristics from the book “Usability Engineering”
1. Simple and natural dialog

2. Minimize the user’s memory load

3. Be consistent

4. Provide feedback

5. Provide clearly marked exits

6. Deal with errors in a helpful and
positive manner

For more information:
• Jakob Nielsen: https://www.nngroup.com/people/jakob-nielsen/

• Book, “Usability Engineering (see Chapter 5)”

https://books.google.ca/books?id=DBOowF7LqIQC&printsec=frontcover&source=gbs_ge_summary

_r&cad=0#v=onepage&q&f=false

James Tam

1. Simple And Natural Dialogue

•Avoid making the interaction unnecessarily complex

https://www.nngroup.com/people/jakob-nielsen/
https://books.google.ca/books?id=DBOowF7LqIQC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

User friendly design via Nielson’s Usability Heuristics 3

James Tam

1. Simple And Natural Dialogue

•Match the user’s conceptual model

•Match the users’ task in as natural a way as possible
- Minimize mapping between interface and task semantics

James Tam

1. Simple And Natural Dialogue

•Present exactly the information the user needs when it is
needed
- Less is more

•Less to learn, to get wrong, to distract...
•This not only includes minimizing the information displayed but also the steps

needed during an interaction

- Remove or hide irrelevant or rarely needed information
•Competes with important information on screen

- Information should appear in natural order
•Order of accessing the information matches the user’s expectations
•Related information is graphically clustered

- Minimize or mitigate modes

- Use windows frugally
•Don’t make navigation and window management excessively complex

User friendly design via Nielson’s Usability Heuristics 4

James Tam

1. Simple And Natural Dialogue

•Adding a ‘pause’ to allow the user to read long text can be of value.

input("Hit enter to continue")

James Tam

1. Simple And Natural Dialogue

•Example dialogs that are neither simple nor natural
- Unnecessary confirmation (“Are you sure?”)

- Adding unnecessary steps (hit enter to continue right after typing in a
command)

User friendly design via Nielson’s Usability Heuristics 5

James Tam

2. Minimize The User’s Memory Load

•Computers are good at ‘remembering’ large amounts of
information.

•People are not so good remembering things.

slide 9

These heuristics were

covered in a video I made

another semester and aside

from numbering the content is

the same.

James Tam

2. Minimize The User’s Memory Load

•To reduce the memory load
of the user:

- Poor approach: a command line
interface (Windows ‘cmd’, MAC
OS ‘terminal’)

- Example 1: applying the design
principle with a graphical
interface.

•Describe required the input
format, show examples of valid
input, provide default inputs.

- Example 2: applying the design
principle with a command line
interface.

User friendly design via Nielson’s Usability Heuristics 6

James Tam

3. Be Consistent

•Consistency of effects (this command/action -> this result)
- Same words, commands, actions will always have the same effect in

equivalent situations

- Makes the system more predictable

- Reduces memory load

•Consistency of layout
- Allows experienced users to predict where things should be (matches

expectations).

James Tam

3. Be Consistent

•Consistency of language and graphics
- Same information/controls in same location on all screens / dialog boxes

forms follow boiler plate.

- Same visual appearance across the system (e.g. widgets).

Images courtesy of

James Tam

User friendly design via Nielson’s Usability Heuristics 7

James Tam

3. Be Consistent

This last

option

always

allows the

user to

proceed to

the next

question.

James Tam

4. Provide Feedback

•Letting the user know:
- what the program is currently doing: was the last command understood,

has it finished with its current task,

- what task is it currently working on,

- how long will the current task take etc.

User friendly design via Nielson’s Usability Heuristics 8

James Tam

4. Provide Feedback

•What is the program doing?

Outlook Express image courtesy of

James Tam

James Tam

4. Provide Feedback

•The rather unfortunate effect on the (poor) recipient.

Outlook Express image courtesy of

James Tam

User friendly design via Nielson’s Usability Heuristics 9

James Tam

4. Provide Feedback

•In terms of this course, feedback is appropriate for instructions
that may not successfully execute
- what the program is doing (e.g., opening a file),

- what errors may have occurred (e.g., could not open file),

- and whenever possible ‘why’ (e.g., file “input.txt” could not be found)

•...it’s not hard to do and not only provides useful updates with
the state of the program (“Is the program almost finished
yet?”) but also some clues as to how to avoid the error (e.g.,
make sure that the input file is in the specified directory).

•At this point your program should at least be able to provide
some rudimentary feedback
- E.g., if a negative value is entered for age then the program can remind

the user what is a valid value (the valid value should be shown to the user
as he or she enters the value):

age = int(input ("Enter age (0 – 114): "))

James Tam

5. Provide Clearly Marked Exits

•This should obviously mean that quitting the program should
be easy/self-evident (although this is not always the case with
all programs!).

•In a more subtle fashion it refers to providing the user the
ability to reverse or take back past actions (e.g., the person was
just experimenting with the program so it shouldn’t be ‘locked’
into mode that is difficult to exit).

•Users should also be able to terminate lengthy operations as
needed.

User friendly design via Nielson’s Usability Heuristics 10

James Tam

5. Provide Clearly Marked Exits

•This doesn’t just mean providing an exit from the program but
the ability to ‘exit’ (take back) the current action.
- Universal Undo/Redo

•e.g., <Ctrl>-<Z> and <Ctrl>-<Y>

- Progress indicator & Interrupt
- Length operations

Image: From the “HCI Hall of Shame”

James Tam

5. Provide Clearly Marked Exits

•Restoring defaults
- Getting back original settings

• Allows for defaults to
be quickly restored

• What option did I
change?

• What was the original
setting?

Image: Internet Explorer security settings curtesy of James Tam

User friendly design via Nielson’s Usability Heuristics 11

James Tam

5. Provide Clearly Marked Exits

The user can skip or

‘exit’ any question.

Image: An old CPSC 231 assignment curtesy of James Tam

James Tam

6. Deal With Errors In A Helpful And
Positive Manner

•(JT: with this the heuristic it states exactly what should be
done).

User friendly design via Nielson’s Usability Heuristics 12

James Tam

Rules Of Thumb For Error Messages

1. Polite and non-intimidating
- Don’t make people feel stupid
– Try again, bonehead!

2. Understandable
- Error 25

3. Specific
- Cannot open this document

- Cannot open “chapter 5” because the application “Microsoft Word”
is not on your system

4. Helpful
- Cannot open “chapter 5” because the application “Microsoft Word”

is not on your system. Open it with “WordPad” instead?

No

Not
AutoCAD Mechanical

So obvious it could
never happen?

Why?

Better

Even better: A potentially
helpful suggestion

James Tam

“HIT ANY KEY TO CONTINUE”

User friendly design via Nielson’s Usability Heuristics 13

James Tam

THE “Any Key”

Image: Curtesy of James Tam

James Tam

I’d Rather Deal With The ‘Any’ Key

Picture courtesy of James Tam: An error message from a Dell desktop computer.

User friendly design via Nielson’s Usability Heuristics 14

James Tam

After This Section You Should Now Know

•Rules of thumb for designing more user-friendly technology.
1. (New for subsequent semesters): simple and natural dialog
2. Minimize the user’s memory load
3. Be consistent
4. Provide feedback
5. Provide clearly marked exits
6. Deal with errors in a helpful and

positive manner

James Tam

Copyright Notification

•“Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

