
5/5/2022

Programming introduction 1

Getting Started With Python
Programming: Part 2

•Getting information from the user (input)

•How information is stored, converting
between different types

•Formatting text output

James Tam

Input

•The computer program getting string information from the user.

•Strings cannot be used for calculations (information for getting
numeric input will provided shortly).

•Format:
<variable name> = input()

OR

<variable name> = input("<Prompting message>")

•Name of the full example: 8input.py
print("What is your name: ")
name = input()

OR
name = input("What is your name: ")

OR
print("What is your name: ", end="")
name = input()

Avoid alignment
issues such as this

5/5/2022

Programming introduction 2

James Tam

Variables: Storing Information (If There Is Time)

• On the computer all information is stored in binary (2 states)
– Example: RAM/memory stores information in a series of on-off

combinations

– A single off/off combination is referred to as a ‘bit’

Bit
on offOR

Byte

•8 bits

James Tam

Can be stored as

Variables: Storing Information (If There Is Time)

• Information must be converted into binary to be stored on a
computer.

User enters
13

slide 4

5/5/2022

Programming introduction 3

James Tam

• 1 bit is used to represent the sign, the rest is used to store the
size of the number
– Sign bit: 1/on = negative, 0/off = positive

• Format:

• Previous example

Storing Integer Information (If There Is Time)

slide 5

Digits representing the size of the

number (all the remaining bits)

Negative

number

Positive

number

1 bit

Positive

number

Size of number, in this case = 13

James Tam

Storing Real Numbers In The Form Of Floating Point
(If There Is Time)

– Mantissa: digits of the number being stored

– Exponent: the direction (negative = left, positive=right) and the number of
places the decimal point must move (‘float’) when storing the real number as a
floating point value.

• Examples with 5 digits used to represent the mantissa:
– e.g. One: 123.45 is represented as 12345 * 10-2

– e.g. Two: 0.12 is represented as 12000 * 10-5

– e.g. Three: 123456 is represented as 12345 * 101

• Remember: Using floating point numbers may result in a loss of accuracy (the float
is an approximation of the real value to be stored).

Sign Mantissa Exponent

1 bit Several bits Several bits

5/5/2022

Programming introduction 4

James Tam

• Typically characters are encoded using ASCII

• Each character is mapped to a numeric value
– E.g., ‘A’ = 65, ‘B’ = 66, ‘a’ = 97, ‘2’ = 50

• These numeric values are stored in the computer using binary

Storing Character Information (If There Is Time)

Character ASCII numeric

code

Binary

code

‘A’ 65 01000001

‘B’ 66 01000010

‘a’ 97 01100001

‘2’ 50 00110010

James Tam

Storing Information: Bottom Line

• Why it important to know that different types of information is
stored differently?
– One motivation: sometimes students don’t why it’s significant that

“123” is not the same as the number 123.

– Certain operations only apply to certain types of information and can
produce errors or unexpected results when applied to other types of
information.

• Example
num = input("Enter a number")

numHalved = num / 2

5/5/2022

Programming introduction 5

James Tam

Converting Between Different Types Of Information

• Example motivation: you may want numerical information to
be stored as a string (for built in string functions e.g., check if a
string consists only of numbers) but also you want to perform
calculations).

• Some of the conversion mechanisms (functions) available in
Python:

Format:
int(<value to convert>)

float(<value to convert>)

str(<value to convert>)

Examples:

Name of the full example: 9convert.py

var1 = 10.9

var2 = int(var1)

print(var1,var2)

()

Value to convert

Converted result

Conversion function

Digits right of

decimal are

removed (truncation

- no rounding)

James Tam

Overloaded Operators

• The same symbol can have different results depending upon
the context.

• Example: the ‘plus’ operator +
– Previously this symbol represented mathematical addition because the

values left and right of the symbol (operands) were numeric e.g.,

num1 = 2 + 2

– If the operands are strings then the symbol represents the string
operation concatenation e.g.,

str1 = "2" + "2"

5/5/2022

Programming introduction 6

James Tam

Overloaded Operators (2)

• Name of the full example: 10overloaded_operator.py
num1 = 2 + 2

str1 = "2" + "2"

print("Addition:", num1)

print("Concatenation:", str1)

#Error cannot perform a concatenation on a number

str2 = "2" + 2

James Tam

Converting Between Different Types Of Information (2)

Examples:

Name of the full example: 11convert.py

var1 = "100"

var2 = "-10.5"

print(var1 + var2)

print(int(var1) + float(var2))

5/5/2022

Programming introduction 7

James Tam

Converting Types: Extra Practice For Students

• Determine the output of the following program:
print(12+33)

print("12"+"33")

x = 12

y = 21

print(x+y)

print(str(x)+str(y))

James Tam

Converting Between Different Types Of Information:
Getting Numeric Input

• The ‘input()’ function only returns a string so the value
returned must be converted to the appropriate type as
needed.
– Name of the full example: 12convert.py

No conversion performed: problem!

HUMAN_CAT_AGE_RATIO = 7

age = input("What is your age in years: ")

catAge = age * HUMAN_CAT_AGE_RATIO

print ("Age in cat years: ", catAge)

• ‘Age’ refers to a string

not a number.

• The ‘*’ is not

mathematical

multiplication

5/5/2022

Programming introduction 8

James Tam

Converting Between Different Types Of Information:
Getting Numeric Input (2)

Input converted: Problem solved!

HUMAN_CAT_AGE_RATIO = 7

ageString = input("What is your age in years: ")

ageNum = int(ageString)

catAge = ageNum * HUMAN_CAT_AGE_RATIO

print("Age in cat years: ", catAge)

print("Alternative: combines 2 steps into 1")

age = int(input("What is your age in years: "))

catAge = age * HUMAN_CAT_AGE_RATIO

print("Age in cat years: ", catAge)

• ‘Age’ converted to

an integer.

• The ‘*’ now

multiplies a

numeric value.

James Tam

Section Summary: Input, Representations

• How to get user input in Python

• How do the different types of variables store/represent
information (optional/extra for now)

• How/why to convert between different types

5/5/2022

Programming introduction 9

James Tam

• Example:
num = 1/3

print("num=",num)

By Default Output Is Unformatted

Sometimes you
get extra spaces
(or blank lines)

The number of places of
precision is determined by
the language not the
programmer

• There may be other issues e.g., you want to display output
in columns of fixed width, or right/left aligned output

• There may be times that specific precision is needed in the
displaying of floating point values

James Tam

Formatting Output

• Output can be formatted in Python through the
use of format specifiers and escape codes

5/5/2022

Programming introduction 10

James Tam

Format Specifiers

• Format:
print ("%<placeholder for type of info to display/code>"
%<source of the info to display>)

• Example (starting with simple cases):
– Name of the full example: 13formatting.py

num = 123

st = "cpsc 231"

print("num=%d" %num)

print("course: %s" %st)

num = 12.5

print("%f %d" %(num,num))

Doesn’t literally
display this: It’s a
placeholder (for
information to be
displayed)

James Tam

Types Of Information That Can Be Formatted Via
Format Specifiers (Placeholders)

Specifier Type of Information to display

%s String

%d Integer

%f Floating point

5/5/2022

Programming introduction 11

James Tam

Format Specifiers: Precision & Field Width

• Precision:
– The number of digits to the right of the decimal point.

• E.g. 3.14 has 2 places of precision

– Alternate ways of specifying this term as: number of places of precision,
number of fractional digits

• Field width:
– Think of it as “the width of a column” (the column created for each

format specifier/placeholder).

• E.g. 1: Four column width %4s

• E.g. 2: Ten column width %10d

– When the column is too narrow to display the data then the column
width is automatically expanded.

– When the column is wider than the width of the data then extra spaces
will be added before or after the data.

• Space before the first “ab” and a space after the second “ab”

• Space after the first “ab” and a space before the second “ab”

James Tam

• Format:
%<field width>1.<precision>2<type of information>

• Examples (format specifiers to format output):
– Name of the full example: 14formatting.p
num1 = 12.55

num2 = 12

str1 = "hi"

print ("%s" %str1)

print ("%3.1f" %num1)

print ("%6.1f" %num1)

print("%-5s" %num2)

print ("%3s%-3s" %("ab", "ab"))

print ("%-3s%3s" %("ab", "ab"))

1 2

6.<SP><SP> 21

1 2

Formatting Effects Using Format Specifiers

• 1 A positive integer will add leading spaces before the information to display (right align),

negatives will add trailing spaces (left align). Excluding a value will set the field width to a value

large enough to display the output

• 2 For numeric variables only.

6.

1<SP> <SP><SP>

ba<SP> <SP>ba

<SP>ba <SP> ba

5/5/2022

Programming introduction 12

James Tam

Displaying The Percent Sign1 (If There Is Time)

• If no format specifiers are used then simply enclose the ‘%’
within the quotes of a print() statement
print("12%") → 12%

• If format specifiers are used within a call to print() then use
one percent sign to act as an escape code for another percent
sign to follow
print("%f%%" %(100)) → 100.000000%

1 Since the question inevitably comes up each term I’m answering it here

James Tam

One Application Of Format Specifiers

• It can be used to align columns of text.

• Example (movie credits, tabular or financial information)

5/5/2022

Programming introduction 13

James Tam

Section Summary: Formatting Output

• How to use format specifiers (field width, precision) to format
output

James Tam

• The back-slash character enclosed within quotes won’t be
displayed but instead indicates that a formatting (escape) code
will follow the slash:

Escape Codes/Characters

Escape sequence Description

\a Alarm: Causes the program to beep.

\n Newline: Moves the cursor to beginning of

the next line.

\t Tab: Moves the cursor forward one tab stop.

\' Single quote: Prints a single quote.

\" Double quote: Prints a double quote.

\\ Backslash: Prints one backslash.

5/5/2022

Programming introduction 14

James Tam

Escape Codes (2)

• Program name: 15formatting.py

print ("\a*Beep!*")

print ("hi\nthere")

print ('it\'s')

print ("he\\y \"you\"")

James Tam

Escape Codes: Application

• It can be used to nicely format text output (alignment output,
provide separators within and between lines)

• Program example: 16formatting.py
firstName = "James"

lastName = "Tam"

mobile = "123-4567"

print("Last name:\t", lastName)

print("First name:\t", firstName)

print("Contact:\t", mobile)

5/5/2022

Programming introduction 15

James Tam

Section Summary: Escape Codes

• How to use escape codes to format output

James Tam

Extra Practice

• Traces:
– Modify the examples (output using format specifiers and escape codes)

so that they are still valid Python statements.

• Alternatively you can try finding some simple ones online or from a
textbook.

– Hand trace the code (execute on paper) without running the program.

– Then run the program and compare the actual vs. expected result.

• Program writing:
– Write a program the will right-align text into 3 columns of data.

– Write a program the will left-align text into 3 columns of data.

5/5/2022

Programming introduction 16

James Tam

After This Section You Should Now Know

• How to format output through:
– The use of format specifiers

– Escape codes

