
6/1/2022

Composites 1

Composite Types, Lists Part 2

• When to use multi-dimensional lists

• Creating 2D lists

• How to access a 2D list and its parts

• Basic 2D list operations: display, accessing parts,
copying the list

• Other composites: strings and tuples

When To Use Lists Of Different Dimensions
• It’s determined by the data – the number of categories of information

determines the number of dimensions to use.

• Examples:

• (1D list)
–Tracking grades for a class (previous example)

–Each cell contains the grade for a student i.e., grades[i]

–There is one dimension that specifies which student’s grades are being
accessed

• (2D list)
–Expanded grades program (table: grades for multiple lectures)

–Again there is one dimension that specifies which student’s grades are being
accessed

–The other dimension can be used to specify the lecture section

One dimension (which student)

6/1/2022

Composites 2

When To Use Lists Of Different Dimensions (2)

• (2D list continued)

Student

Lecture

section First

student

Second

student

Third

student
…

L01

L02

L03

L04

L05

:

L0N

When To Use Lists Of Different Dimensions (3)

• (2D list continued)

• Notice that each row is merely a 1D list

• (A 2D list is a list containing rows of 1D lists)

L02

L07

L01

L03

L04

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

Columns (e.g. grades)

Rows

(e.g.

lecture

section)

L06

L05

Important:

• List elements are

specified in the order of
[row] [column]

• Specifying only a single

set of brackets

specifies the row

6/1/2022

Composites 3

Creating And Initializing A Multi-Dimensional
List In Python (Fixed Size During Creation)

General structure
<list_name> = [[<value 1>, <value 2>, ... <value n>],

[<value 1>, <value 2>, ... <value n>],

: : :

: : :

[<value 1>, <value 2>, ... <value n>]]

Rows

Columns

Name of the example program: 1display2DList.py

Learning: creating, displaying a fixed size 2D list

table = [[0, 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

for r in range (0, 4, 1):

print (table[r]) #Each call to print displays a 1D list

for r in range (0,4,1):

for c in range (0,3,1):

print(table[r][c], end="")

print()

print(table[2][0]) #Displays 2 not 0

Creating And Initializing A Multi-Dimensional List In
Python (2): Fixed Size During Creation

r = 0

r = 1

r = 2

r = 3

r = 0

r = 1

r = 2

r = 3

0 1 2 (col)

c=0 c=1 c=2

#Displays a list element

6/1/2022

Composites 4

James Tam

2D Lists: Levels Of Access

table = [[0, 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

print(table) #Entire list

print(table[0]) #First row

print(table[3][1]) #4th row, 2nd column

print(table[0][0][0]) #What does this do?

table = [[["a","b"], 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

print(table[0][0][0]) #Now what does this do?

In Python: List Elements Need Not Store The
Same Data Type

• This is one of the differences between Python lists and arrays
in other languages

• Example:
aList = [False, "James", "Tam", "210-9455", 707, 10.5]

6/1/2022

Composites 5

James Tam

Copying Lists

• Important: A variable that appears to be a list is really a
reference to a list.
– Recall: the reference and the list are two separate memory locations!

matrix = [[0, 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

– Wrong way to ‘copy’ a 2D list

aList1 = aList2 (Why is this wrong? Hint: recall what is stored in

aList1 and aList1)

James Tam

Copying Lists: Example

• Name of the example program: 2copyingListsBothWays.py

• This is the wrong way.

aGrid1 = create()

aGrid2 = aGrid1

aGrid1[3][3] = "!"

print("First list")

display(aGrid1)

print("Second list")

display(aGrid2)

FYI:
def create():

aGrid = [["*","*","*","*"],
["*","*","*","*"],
["*","*","*","*"],
["*","*","*","*"]]

return(aGrid)

6/1/2022

Composites 6

James Tam

• Shallow copy: copies what’s stored in the reference (location
of a list).

• Deep copy: copies the data from one list to another.
– Create a new list e.g. aList2 = [0]*3

– Copy each piece of data (list elements) from one list to another e.g.
aList2[0] = aList1[0]

New Terminology

Code
aList1 = [1,2,3]
aList2 =aList1

aList1 [1, 2, 3]

aList2

aList1 [1, 2, 3]

aList2 [0, 0, 0]

James Tam

Copying Lists: Example (2)

• This is the right way.
aGrid1 = create()

aGrid2 = create()

copy(aGrid1,aGrid2)

copy(aGrid1,aGrid2)

aGrid1[0][0] = "?" #These statements prove there’s two lists

aGrid1[3][3] = "?"

print("First list")

display(aGrid1)

print("Second list")

display(aGrid2)

def copy(destination,source):
for r in range (0,SIZE,1):

for c in range (0,SIZE,1):
destination[r][c] = source[r][c]

6/1/2022

Composites 7

James Tam

Copying Lists: Write The Code Yourself

• For this class you should not use some else’s pre-created list
copy method (e.g. those defined when you “import copy”)

• Not all programming languages have this capability (you will
need to know how to do it yourself).

• Writing the code yourself will provide you with extra practice
and help you become more familiar with list (in other
languages ‘array’) operations.

Extra Practice

List operations:
– For a numerical list: implement some common mathematical functions

(e.g., average, min, max, mode – last one is challenging).

– For any type of list: implement common list operations (e.g., displaying
all elements one at a time, inserting elements at the end of the list,
insert elements in order, searching for elements, removing an element,
finding the smallest and largest element).

• In order to develop your programming skills you should write the code
yourself rather than using predefined python methods such as append, min,
max etc.

6/1/2022

Composites 8

After This Sub-Section You Should Now Know

• When to use lists of different dimensions

• Basic operations on a 2D list

• How to create a 2D list: fixed size and by dynamically creating it

• How to access a 2D list: the whole list, rows in the list and
individual elements

• Python lists need not be homogenous (contain the same type
of element)

• How to properly copy the contents of a 2D list into another 2D
list as well as a common mistake when copying lists

Composite Types: Other
Composites

You will learn how to create new
variables that are collections of other
entities: strings (character composite),
tuples (similar to a list but immutable)

6/1/2022

Composites 9

ASCII Values (Reminder)

• Each character is assigned an ASCII code e.g., ‘A’ = 65, ‘b’ = 98

• The chr() function can be used to determine the character (string of
length one) for a particular ASCII code (number to character)

• The ord() function can be used to determine the ASCII code for a
‘character’ - string of length one (character to number)

• Name of the example program: 1ascii.py

– Learning: converting to/from ASCII codes to the equivalent character.

aChar = input("Enter a character whose ASCII value that you wish to

see: ")

print("ASCII value of %s is %d" %(aChar,ord(aChar)))

aCode = int(input("Enter an ASCII code to convert to a character: "))

print("The character for ASCII code %d is %s" %(aCode,chr(aCode)))

String: Composite

• Strings are just a series of characters (e.g., alpha, numeric, punctuation
etc.)

– Like a list a string is:
• A composite type (can be treated as one entity or individual parts can be accessed).

– Name of example: “2stringComposite.py”

• Learning: strings are composite, how to access the entire composite string and how to
access individual elements

aString1 = "hello"

print("Whole string %s" %(aString1))

print("Sub string %s-%s" %(aString1[1],aString1[4]))

6/1/2022

Composites 10

James Tam

Passing Strings As Parameters

• A string is composite so either the entire string or just a sub-
string can be passed as a parameter.

• Name of example: 3stringParameters.py
– Learning: How to pass a string (or substring) to a function.

def fun1(str1):

print("Inside fun1 %s" %(str1))

def fun2(str2):

print("Inside fun2 %s" %(str2))

def start():

str1 = "abc"

print("Inside start %s" %(str1))

fun1(str1)

fun2(str1[1])

Passing whole string

Passing part of a string

James Tam

Mutable, Constant, Immutable,

• Mutable types:
– The original memory location can change

• Constants
– Memory location shouldn’t change (Python): may produce a logic error

if modified e.g. GST_RATE = 0.05

– Memory location syntactically cannot change (C++, Java): produces a
syntax error (violates the syntax or rule that constants cannot change)

• Immutable types:
– The original memory location won’t change

– Changes to a variable of a pre-existing immutable type creates a new
location in memory. There are now two locations.

num 1217

num = 12
num = 17

COOL_DUDECOOL_DUDE = "Tam"
COOL_DUDE = "Mat"

"Tam"

"Mat"

6/1/2022

Composites 11

James Tam

Lists Are Mutable

• Example
aList = [1,2,3]

aList[0] = 10

print(aList) # [10,2,3]

The original list can
change (modifying an
element) making this
type mutable

Strings Are Immutable

• Even though it may look a string can change they actually
cannot be edited (original memory location cannot change).

• Name of the example program: 4immutableStrings.py
– Learning: strings are immutable:

• Using the assignment operator in conjunction with the name of the whole string
produces a new string (string variable refers to a new string not the original string).

• Attempting to modify a string produces an error.

s1 = "hi"

print(s1)

s1 = "bye" # New string created

print(s1)

s1[0] = "G" # Error

hi

bye

Cannot modify
the characters in
a string
(immutable)

6/1/2022

Composites 12

Substring Operations

• Sometimes you may wish to extract out a portion of a string.
– E.g., Extract first name “James” from a full name “James T. Kirk, Captain”

• This operation is referred to as a ‘substring’ operation in many
programming languages.

• There are two implementations of the substring operation in
Python:
– String slicing

– String splitting

1 The name James T. Kirk is  CBS

String Slicing

– Slicing a string will return a portion of a string based on the indices
provided

– The index can indicate the start (include) and end point (exclude) of the
substring.

– Format:
string_name [start_index : end_index]

– Name of example: 5stringSlicing.py
• Learning: how the slicing operator works

aString = "abcdefghij"

print(aString)

temp = aString[2:5]

print(temp)

temp = aString[:5]

print(temp)

temp = aString[7:]

print(temp)

0 1 2 3 4 5 6 7 8 9

Included
in the
slice

Excluded in the
slice

From start to the
end (exc)

From 7 (included)
until the end

6/1/2022

Composites 13

James Tam

Example Use: String Slicing

• Where characters at fixed positions must be extracted.

• Example: area code portion of a telephone number
“403-210-9455”

–The “403” area code could then be passed to a data base
lookup to determine the province.

String Splitting

• Divide a string into portions with a particular character
determining where the split occurs.

• Practical usage
– The string “The cat in the hat” could be split into individual words (split

occurs when spaces are encountered).
– “The” “cat” “in” “the” “hat”
– Each word could then be individually passed to a spell checker.

6/1/2022

Composites 14

James Tam

String Splitting (2)

• Format:
string_name.split ('<character used in the split')

• Online example: 6stringSpliting.py
– Learning: how the slicing operator works.

aString = "man who smiles"

Default split character is a space

one, two, three = aString.split()

print(one)

print(two)

print(three)

aString = "James,Tam"

first, last = aString.split(",")

nic = first + " \"The Bullet\" " + last

print(nic)

String Testing Functions1

• These functions test a string to see if a given condition has
been met and return either “True” or “False” (Boolean).

• Format:
string_name.function_name()

1 These functions will return false if the string is empty (less than one character).

6/1/2022

Composites 15

String Testing Functions (2)1

Boolean
Function

Description

isalpha() Only true if the string consists only of alphabetic
characters.

isdigit() Only returns true if the string consists only of digits.

isalnum() Only returns true if the string is composed only of
alphabetic characters or numeric digits (alphanumeric)

islower() Only returns true if the alphabetic characters in the string
are all lower case.

isspace() Only returns true if string consists only of whitespace
characters (“ “, “\n”, “\t”)

isupper() Only returns true if the alphabetic characters in the string
are all upper case.

1 Each one of this functions (‘method’) must be preceded by a string variable and a dot e.g. aStr.isalpha() #where aStr refers
to a string

Applying A String Testing Function

Name of the example: 7stringTestFunctions.py
• Learning: using the isdigit() function to check for invalid types (float

instead of integer)

ok = False

while(ok == False):

temp = input("Enter an integer: ")

ok = temp.isdigit()

if (ok == False):

print(temp, "is not an integer")

num = int(temp)

num = num + num

print(num)

Heuristic (end of
“loops”) applied also
(good error message)

6/1/2022

Composites 16

Functions That Return Modified Copies Of Strings (IF
There Is Time)1

• These functions return a modified version of an existing string (leaves the original
string intact).

Function Description

lower() Returns a copy of the string with all the alpha characters as lower
case (non-alpha characters are unaffected).

upper() Returns a copy of the string with all the alpha characters as upper
case (non-alpha characters are unaffected).

strip() Returns a copy of the string with all leading and trailing
whitespace characters removed.

lstrip() Returns a copy of the string with all leading (left) whitespace
characters removed.

rstrip() Returns a copy of the string with all trailing (right) whitespace
characters removed.

lstrip(char) Returns a copy of the string with all leading instances of the
character parameter removed.

rstrip(char) Returns a copy of the string with all trailing instances of the
character parameter removed.

Common whitespace characters = sp, tab, enter

1 Each one of this functions (‘method’) must be preceded by a string variable and a dot e.g. aStr.lower() #where aStr refers to a
string

xxx

Examples: Functions That Return Modified
Copies (IF There Is Time)

Name of the example program: 8stringModificationFunctions.py
Learning: learning how common string functions operate

aString = "talk1! AbouT"

print(aString)

aString = aString.upper()

print(aString)

aString = "xxhelxlo therex"

print(aString)

aString = aString.lstrip("x")

print(aString)

aString = "xxhellx thxrx"

aString = aString.rstrip("x")

print(aString)

6/1/2022

Composites 17

Tuples

• Much like a list, a tuple is a composite type whose elements
can consist of any other type.

• Tuples support many of the same operators as lists such as
indexing.

• However tuples are immutable.

• Like lists each element of a tuple is not confined to characters
(string of length 1).

• But unlike a list a tuple is immutable.
– It stores data that should not change.

– In that way it’s somewhat analogous to a named constant (e.g. PI =
3.14) but unlike this named constant changes can only produce a new
tuple.

Creating Tuples

• Format:
tuple_name = (value1, value2...valuen)

• Example:
tup = (1,2,"foo",0.3)

6/1/2022

Composites 18

A Small Example Using Tuples

• Name of the online example: 9simpleTupleExample.py
– Learning: accessing an entire tuple, accessing individual elements, tuples are an

immutable type.

tup = (1,2,"foo",0.3)

print(tup)

print(tup[2])

tup[2] = "bar" Error (trying to change an immutable):

“TypeError: object does not support item assignment”

• Although it appears that functions in Python can return multiple values
they are in fact consistent with how functions are defined in other
programming languages.

• Functions can either return zero or exactly one value only.

• Specifying the return value with brackets merely returns one tuple back to
the caller.

def fun():

return(1,2,3)

def fun(num):

if (num > 0):

print("pos ")

return()

elif (num < 0):

print("neg")

return()

Function Return Values

Returns: A tuple with three elements

Nothing is returned back to the caller

(empty tuple)

Def fun(num1,num2,num3):

return(num1,num2,num3)

6/1/2022

Composites 19

Functions Changing Multiple Items

• Because functions only return 0 or 1 items (Python returns one
composite) the mechanism of passing by reference (covered
earlier in this section) is an important concept.
– What if more than one change must be communicated back to the caller

(only one entity can be returned).

– Multiple changes to parameters (>1) must be passed by reference.

James Tam

Proving That Python Functions Return A Tuple

• Name of the online example:
10functionReturnValues.py
– Learning:

• Demonstrating functions return tuples

• Iterating a tuple using loops: for, while.

def fun():

tupleInFun = (1.5,2,7,0.3)

return(tupleInFun)

def start():

tupleInStart = fun()

print("Iterating using a for-loop in conjunction with

the 'in' operator")

for element in tupleInStart:

print("%.1f" %(element))

6/1/2022

Composites 20

James Tam

Proving That Python Functions Return A Tuple (2)

print()

i = 0

numElements = len(tupleInStart)

print("Iterating using a while-loop in conjunction with

the len() function")

while (i < numElements):

print("%.1f" %(tupleInStart[i]))

i = i + 1

Extra Practice

String:
– Write the code that implements string operations (e.g., splitting) or

string functions (e.g., determining if a string consists only of numbers)

6/1/2022

Composites 21

After This Section You Should Now Know

• What is the difference between a mutable and an immutable
type

• How strings are actually a composite type

• Common string functions and operations

• How a tuple is a composite, immutable type.

• Iterating tuples using for and while loops

After This Section You Should Now Know (2)

• When to use lists of different dimensions

• Basic operations on a 2D list

• What is a tuple, common operations on tuples such as
creation, accessing elements, displaying a tuple or elements

• How functions return zero or one item

• What is a reference and how it differs from a regular variable

• Why references are used

• The two parameter passing mechanisms: pass-by-value and
pass-by-reference

