
10/16/2022

Decomposition/functions 1

Functions: Decomposition And
Code Reuse, Part 3

• Global identifiers, scope and program design
• Declaring variables: where in your function/at what level in

your program
• Boolean functions
• Breaking long functions into parts
• Common errors when defining functions
• Program design and defining functions
• Testing functions
• Benefits & drawbacks of defining functions

James Tam

In Class Exercise, Functions

• Write a function called ‘emphasize’ that takes a string as a
parameter.

• This function returns a modified version of the string:
– !!! will be added onto the end (three exclamation marks are added to

the end of the existing string).

– Recall: The concatenation operator is the ‘plus’ operator ‘+’ and it can
connect two strings.

10/16/2022

Decomposition/functions 2

James Tam

Declaring Variables: Stylistic Note

• Creating variables all at once at the
start of a function.
def start():

#Variables declared

principle = 0

rate = 0

time = 0

interest = 0

amount = 0

introduction()

principle, rate, time = getInputs()

interest, amount =

calculate(principle, rate, time)

display(principle, rate, time,

interest, amount)

start()

Not syntactically
required but a
stylistic approach

Origins: many languages (e.g. C,
C++, Java, Pascal) require variables
to be declared with a specific type
before they can be used:
fun ()
{

//Variables declared
Scanner in = null;
int age = 0;

in = new Scanner(System.in);
age = in.nextInt()
System.out.print("Age:");

}

James Tam

Global Scope (Again)

• Identifiers (constants or variables) that are declared within the
body of a function have a local scope (the function).
def fun():

num = 12

End of function fun

• Identifiers (constants or variables) that are created outside the
body of a function have a global scope (the program).
num = 12

def fun1():

Instructions

def fun2():

Instructions

End of program

Scope of num is the function

Scope of num is the entire program

10/16/2022

Decomposition/functions 3

James Tam

Global Scope: An Example

• Name of the example program: 7simpleGlobalExample.py
– Learning objective: how global variables are accessible throughout a program.

num1 = 10

def fun():

print(num1)

def start():

fun()

print(num2)

num2 = 20

start()

James Tam

Global Variables: General Characteristics

• You can access the contents of global variables anywhere in the program.

– Python: this can occur even if the ‘global’ keyword is not used.

• In most programming languages you can also modify global variables
anywhere as well.

– This is why the usage of global variables is regarded as bad programming style,
they can be accidentally modified anywhere in the program.

– Changes in one part of the program can introduce unexpected side effects in
another part of the program.

– So unless you have a compelling reason you should NOT be using global
variables but instead you should pass variables as parameters/returning values.

• Unless you are told otherwise using global variables can affect the style component of
your assignment grade.

• Global constants are acceptable and are commonly used.

10/16/2022

Decomposition/functions 4

James Tam

Global Variables: Python Specific Characteristic

• Name of the example program: 8globalsVsLocals.py
– Learning objective: Relationship between accessing global variables and

creating locals.

num = 1

def fun():

num = 2

print(num)

def start():

print(num)

fun()

print(num)

start()

Global

Global

Local created and displayed

James Tam

Scoping Rules: Globals

• When an identifier is referenced (variable or constant) then:
1. First look in the local scope for the creation of the identifier: if found

here then stop looking and use this identifier

2. If nothing exists at the local level then look globally

def aFunction():

print(num)

Reference to
an identifier

2. Check globally

num = <value> here?
1. Check locally

num = <value> here?

10/16/2022

Decomposition/functions 5

James Tam

Python Globals: ‘Read’ But Not ‘Write’ Access

• By default global variables can be accessed globally (read
access).

• Attempting to change the value of global variable will only
create a new local variable by the same name (no write access
to the global, a local is created).
num = 1

def fun():

num = 2

print(num)

• Prefacing the name of a variable with the keyword ‘global’ in
a function will indicate changes in the function will refer to the
global variable rather than creating a local one.
global <variable name>

Global num

Local num

James Tam

Globals: Another Example (‘Write’ Access Via The
“Global” Keyword)

• Name of the example program: 9modifyingGlobals.py
– Learning objective: How global variables can be modified inside functions.

num = 1

def fun():

global num

num = 2

print(num)

def start():

print(num)

fun()

print(num)

start()

Global

References to the name ‘num’ now affect
the global variable, local variable not
created inside function ‘fun’

Global still changed after ‘fun()’ is done

Global changed

10/16/2022

Decomposition/functions 6

James Tam

What Level To Declare Variables

• Declare your variables as local to a function.

• When there are multiple levels of functions (a level is formed
when one function calls another) then:
– A variable should be created at the lowest level possible

fun1

fun2 Fun3(x,y)

Need
x,y here

x,y
Get and
return x,y

fun3

fun1

fun2

Needed here
y, z

Needed here
x

James Tam

Boolean Functions

• Return a Boolean value (true/false): “Asks a question”

• Typically the Boolean function will ‘ask the question’ about a
parameter(s)

• Example:
– Is it true that the string can be converted to a number?

aString = input("Enter age: ")

ageOK = isNum(aString)

if (ageOK != True):

print("Age must be a numeric value")

else:

OK to convert the string to a number

age = int(aString)

Boolean function
def isNum(aString):

Returns (True
or False)

10/16/2022

Decomposition/functions 7

James Tam

Example: How To Decompose A Long Function

• To decompose (break into parts) long functions examine the
structure for sections e.g. loops (and their bodies), branches
(and their bodies).

• Each of these sections may be a candidate to be moved into it’s
own separate function body:

Before
def fun1():

while(BE1):
if(BE2):

#If body #1
if(BE3):

#If body #2

After
def fun3():

#If body #2

def fun2():
#If body #1

def fun1():
while(BE1):

if(BE2):
fun2()

if(BE3):
fun3()

Functions Should Be Defined Before They Can Be
Called!

• Correct 
def fun():

print("Works")

Start

fun()

• Incorrect 
Start

fun()

def fun():

print("Doesn't work")

Function

definition

Function

call

Function

definition

Function

call

10/16/2022

Decomposition/functions 8

James Tam

Another Common Mistake

• Forgetting the brackets during the function call:

def fun():

print("In fun")

Start of program

print(“Starting the program")

fun

James Tam

Another Common Mistake

• Forgetting the brackets during the function call:

def fun():

print("In fun")

Start of program

print("Program started")

fun()

With python the missing set

of brackets do not produce a

syntax/translation error

10/16/2022

Decomposition/functions 9

James Tam

Another Common Problem: Indentation

• Recall: In Python indentation indicates that statements are part
of the body of a function.

• (In other programming languages the indentation is not a
mandatory part of the language but indenting is considered
good style because it makes the program easier to read).

• Forgetting to indent:
def start():

print("start")

start()

James Tam

Another Common Problem: Indentation (2)

• Inconsistent indentation:
def start():

print("first")

Error: Unless this is the body of branch or loop

print("second")

start()

10/16/2022

Decomposition/functions 10

James Tam

Creating A Large Document

• Recall: When creating a large document you should
plan out the parts before doing any actual writing.

Chapter 1
• Introduction
• Section 1.1
• Section 1.2
• Section 1.3
• Conclusion

Chapter 2
• Introduction
• Section 2.1
• Section 2.2
• Section 2.3
• Section 2.4
• Conclusion

Chapter 3
• Introduction
• Section 3.1
• Section 3.2
• Conclusion

Step 1: Outline all the parts (no writing)

Section 1.1
It all started seven
and two score
years ago…

Step 2: After all parts outlined, now
commence writing one part at a time

James Tam

Creating A Large Program

• When writing a large program you should plan out the parts
before doing any actual writing.

Step 1: Calculate interest (write empty ‘skeleton’ functions)
def getInformation(): def doCalculations(): def displayResults():

Step 2: All functions outlined, write function bodies one-at-
a-time (test before writing next function)

def getInformation():
principle = int(input())
interest = int(input())
time = int(input())
return(principle,interest,time) # Simple test: check inputs

are properly read as input
and returned to caller
p,r,t = getInformation()
print(p,r,t)

10/16/2022

Decomposition/functions 11

James Tam

Yet Another Problem: Creating ‘Empty’ Functions

def start():

start()

Problem: This statement

appears to be a part of the

body of the function but it is

not indented???!!!

James Tam

Solution When Outlining Your Program By Starting With ‘Empty’
Functions

def fun():

print()

Program’sstart

fun()

A function must have

at least one

instruction in the

body

Alternative (writing an
empty function: ‘pass’ a
python instruction that
literally does nothing)

def fun():

pass

Program’s start

fun()

10/16/2022

Decomposition/functions 12

James Tam

Testing Functions

• The correctness of a function should be verified. (“Does it do
what it is supposed to do?”)

• Typically this is done by calling the function, passing in
predetermined parameters and checking the result.

• Example: 10absolute_test.py
def absolute(number):

if (number < 0):

result = number * -1

else:

result = number

return(result)

Test cases

print(absolute(-13))

print(absolute(7))

Expected results:
13
7

Why Employ Problem Decomposition And Modular
Design (1)

• Drawback
–Complexity – understanding and setting up inter-function

communication may appear daunting at first.

–Tracing the program may appear harder as execution appears to “jump”
around between functions.

–These are ‘one time’ costs: once you learn the basic principles of
functions with one language then most languages will be similar.

10/16/2022

Decomposition/functions 13

James Tam

Why Employ Problem Decomposition And Modular
Design (2)

• Benefit
– Solution is easier to visualize and create (decompose the problem so

only one part of a time must be dealt with).

–Easier to test the program:
• Test one feature/function at a time

• (Testing multiple features increases complexity)

–Easier to maintain (if functions are independent changes in one
function can have a minimal impact on other functions, if the code for a
function is used multiple times then updates only have to be made
once).

– Less redundancy, smaller program size (especially if the function is used
many times throughout the program).

– Smaller programs size: if the function is called many times rather than
repeating the same code, the function need only be defined once and
then can be called many times.

James Tam

After This Section You Should Now Know

• What is global scope

• Consequences of employing global scope

• What are scoping rules when referring to an identifier

• Where variables should be declared in the body of a function

• A guideline for the level at which variables should be declared

• How/when to employ doc string documentation

• What is a Boolean function

• A technique for decomposing a long function into smaller
functions

• Common errors when defining functions

• The basics of testing a function

• The benefits & drawbacks of defining functions

10/16/2022

Decomposition/functions 14

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

