
10/5/2022

Decomposition/functions 1

Functions: Decomposition And
Code Reuse, Part 1

• Defining new functions

• Calling functions you have defined

• Declaring variables that are local to a

function

James Tam

Tip For Success: Reminder

• Look through the examples and notes before class.

• This is especially important for this section because the
execution of these programs will not be sequential order.

• Instead execution will appear to ‘jump around’ so it will be
harder to follow the examples if you don’t do a little
preparatory work.

• Also it would be helpful to take notes that include greater
detail:
– For example: Literally just sketching out the diagrams that I draw

without the extra accompanying verbal description that I provide in
class probably won’t be useful to study from later.

10/5/2022

Decomposition/functions 2

James Tam

Solving Larger Problems

• Sometimes you will have to write a program for a large and/or
complex problem.

• One technique employed in this type of situation is the top
down approach to design.
– The main advantage is that it reduces the complexity of the problem

because you only have to work on it a portion at a time.

Top Down Design

1. Start by outlining the major parts (structure)

2. Then implement the solution for each part

My autobiography

Chapter 1:

The humble beginnings
Chapter 2:

My rise to greatness

…

Chapter 7:

The end of an era

Chapter 1: The humble beginnings

It all started ten and one score years ago

with a log-shaped computer work station…

Image copyright unknown

10/5/2022

Decomposition/functions 3

James Tam

Applying The Top Down Design To Programming

• First: outline the parts of your program before writing the
instructions.
– These ‘parts’ will take the form of functions.

• Second: implement (write) the code for one part/function at a
time.

• Third: run a reasonable number of tests on that function to
ensure it is correct.

• Fourth: apply any bug fixes that may be needed and test again.

• Fifth: only after a reasonable amount of testing has been done
on a function should Steps 2 – 4 be completed on another
function.

James Tam

Procedural Programming & This Course

• New terminology:
– ‘Function’, ‘procedure’, ‘subroutine’ are different terms for the same

programming tool (the term used depends upon the programming
language).

– The most commonly used term is ‘function’.

• Functional decomposition is a key part of CPSC 217 (Exert from
the university calendar description)
– “Introduction to problem solving, analysis and design of small-scale

computational systems and implementation using a procedural

programming language. ”

• This is why later assignments are strict in marking – you must
implement your solution using proper procedural
programming techniques (taught in class).
– Otherwise you have missed out on the major learning objective for the

this course.

10/5/2022

Decomposition/functions 4

Decomposing Your Program Into Functions According
To Tasks/Features It Needs To Implement

Main tasks to

be fulfilled by

the program

Important

subtask #1

Important

subtask #2

Important

subtask #3

Function #1

…Etc.

Function #2 Function #3 …Etc.

When do you stop decomposing and start writing functions? No clear cut off but use the “Good
style” principles (later in these notes) as a guide e.g., a function should have one well defined
task and not exceed a screen in length.

How To Decompose A Problem
Into Functions

• Break down the program by what it does (described with
actions/verbs or action phrases).

• Eventually the different parts of the program will be
implemented as functions.

10/5/2022

Decomposition/functions 5

Example Problem

• Design a program that will perform a simple interest
calculation.

• The program should prompt the user for the appropriate
values, perform the calculation and display the values
onscreen.

Example Problem

• Design a program that will perform a simple interest
calculation.

• The program should prompt the user for the appropriate
values, perform the calculation and display the values
onscreen.

• Action/verb list:
– Prompt

– Calculate

– Display

10/5/2022

Decomposition/functions 6

Top Down Approach: Breaking A Programming
Problem Down Into Parts (Functions)

Calculate Interest

Get information Do calculations Display results

Things Needed In Order To Use Functions

•Function call
– Actually running (executing) the function.

– You have already done this second part many times because up to this
point you have been using functions that have already been defined by
someone else e.g., print(), input()

•Function definition
– Instructions that indicate what the function will do when it runs.

– Before this section: you have used built-in python functions (with their
instructions already written by someone else).

– In this section: you will learn how to write the instructions inside a
function body which execute when that function runs.

10/5/2022

Decomposition/functions 7

Functions (Basic Case: No parameters/Inputs)

Function call

Function definition

Defining A Function

• Format:
def <function name>1():

body2

• Example:
def displayInstructions():

print ("Displaying instructions on how to use the

program")

1 Functions should be named according to the rules for naming variables (all lower case alphabetic, separate

multiple words via camel case or by using an underscore).

2 Body = the instruction or group of instructions that execute when the function executes (when called).

The rule in Python for specifying the body is to use indentation.

10/5/2022

Decomposition/functions 8

Calling A Function

• Format:
<function name>()

• Example:

displayInstructions()

James Tam

Quick Recap: Starting Execution Point

• The program starts at the first executable instruction that is
not indented.

• In the case of your programs thus far, all statement, have been
unindented (save loops/branches) so it’s just the first
statement that is the starting execution point.

• But note that the body of functions MUST be indented in
Python.
– This means instructions at the top of the program may not be first ones

to execute (they won’t automatically execute if they are part of the
body/definition of a function).

HUMAN_CAT_AGE_RATIO = 7
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO
…

10/5/2022

Decomposition/functions 9

James Tam

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

• Name of the example program: 1firstExampleFunction.py
– Learning objective:

def displayInstructions():

print("Displaying instructions")

Main body of code (starting execution point, not indented)

displayInstructions()

print("End of program")

James Tam

• Name of the example program: 1firstExampleFunction.py

def displayInstructions():

print("Displaying instructions")

Main body of code (starting execution point)

displayInstructions()

print("End of program")

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

(Something new

in this section):

Function

definition

(You’ve done

this before):

Function call

10/5/2022

Decomposition/functions 10

James Tam

Functions Facilitate Code Reuse/Efficiency

• Once the function definition is complete (and tested
reasonably) it can be called (reused) many times.

def displayInstructions():

print("Displaying instructions")

Main body of code (starting execution point)

displayInstructions()

displayInstructions()

displayInstructions()

• Think about how many times prewritten functions such as
input and print have be used.

James Tam

Defining The Main Body Of Code As A Function

• Good style: unless it’s mandatory, all instructions must be inside a function.

• Rather than defining instructions outside of a function the main starting
execution point can also be defined explicitly as a function.

• (The previous program rewritten to include an explicit start function)
Example program: 2firstExampleFunctionV2.py

– Learning objective: enclosing the start of the program inside a function

def displayInstructions():

print ("Displaying instructions")

def start():

displayInstructions()

print("End of program")

• Important: If you explicitly define the starting function then do not forgot
to explicitly call it!

start ()

Don’t forget to start your program!

Program starts at the first executable

un-indented instruction

10/5/2022

Decomposition/functions 11

James Tam

Stylistic Note

• By convention the starting function is frequently named
‘main()’ or in my case ‘start()’.
def main():

• OR
def start():

• This is done so the reader can quickly find the beginning
execution point.

James Tam

New Terminology

• Local variables: are created within the body of a function
(indented).

• Global constants: created outside the body of a function.

• (The significance of global vs. local is coming up shortly).

HUMAN_CAT_AGE_RATIO = 7

def getInformation():
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO

Global
constant

Local
variables

10/5/2022

Decomposition/functions 12

James Tam

Creating Your Variables

• Before this section of notes: all statements (including the
creation of a variables) occur outside of a function

• Now that you have learned how to define functions, ALL your
variables must be created with the body of a function.

• Constants can still be created outside of a function (more on
this later).

HUMAN_CAT_AGE_RATIO = 7
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO
…

HUMAN_CAT_AGE_RATIO = 7

def getInformation():
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO

‘Outside’: OK for
constants only

• Inside function
body: all variables
must be here

• They are indented
after the ‘def’

James Tam

Reason #1: Declaring Variables Locally

•Variables are memory locations that are used for the temporary
storage of information.

num = 888

•Each variable uses up a portion of memory, if the program is
large then many variables may have to be declared (a lot of
memory may have to be allocated to store the contents of
variables).

888num

RAM

10/5/2022

Decomposition/functions 13

What Is The Benefit Of Being ‘Local’

•Efficiency: To minimize the amount of memory that is used to
store the contents of variables only create variables when they
are needed (“allocated”).

•When the memory for a variable is no longer needed it can be
‘freed up’ and reused (“de-allocated”).

•Design a program so that memory for variables is only allocated
(reserved in memory) as needed and de-allocated when they
are not (the memory is free up)

–Variables should be declared as local to a function.

•(There’s an even better reason for making variables local
coming up later under ‘side effects’).

James Tam

Scope

• The scope of an identifier
(variable, constant) is where it
may be accessed and used.

• In Python1:

– An identifier comes into scope
(becomes visible to the program
and can be used) after it has been
declared.

– An identifier goes out of scope (no
longer visible so it can no longer be
used) at the end of the indented
block where the identifier has been
declared.

1 The concept of scoping (limited visibility) applies to all programming languages. The rules for

determining when identifiers come into and go out of scope will vary with a particular language.

RATIO = 7
def getInformation():

age = input("Age: ")

catAge = age * RATIO

getInformation()

age
comes
in
scope

catAge
comes in
scope

End of function (age,
catAge go out of

scope)

RATIO
comes
in
scope

End of program
(RATIO goes out of

scope)

10/5/2022

Decomposition/functions 14

James Tam

Visually Representing Scope

RATIO = 7

def getInformation():

age = input("Age: ")

catAge = age * RATIO

#End of function

getInformation()

#End of whole program

Scope of age
(body of
function)

Scope of
RATIO
(the
whole
program)

Age,
catAge is

not in scope

outside the

function

Scope of
catAge

(body of
function)

Age, catAge
is not in scope

outside the

function

James Tam

Visual Reminder Of How Locals Work

Function call (local variables

get allocated in memory)

The program code in the function executes
(the variables are used to store
information needed for the function)

Function ends (local variables

get de-allocated in memory)

10/5/2022

Decomposition/functions 15

Reminder: Where To Create Local Variables

Format:

def <function name>():

Example:

def fun():

num1 = 1

num2 = 2

Somewhere within
the body of the
function
(indented part)

James Tam

Working With Local Variables: Putting It All Together

• Name of the example program: 3secondExampleFunction.py
– Learning objective: creating/defining variables that only exist while a function runs

(local to that function).

def fun():

num1 = 1

num2 = 2

print(num1, " ", num2)

start function

fun()

Variables that

are local to

function ‘fun’
Scope of num1

Scope of num2

10/5/2022

Decomposition/functions 16

James Tam

After This Section You Should Now Know

• How and why the top down approach can be used to
decompose problems

– What is procedural programming

• How to write the definition for a function

• How to write a function call

• How and why to declare variables locally

• How to pass information to functions via parameters

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

