
10/30/2022

Composites 1

Composite Types, Lists Part 2

• When to use multi-dimensional lists

• Creating 2D lists

• How to access a 2D list and its parts

• Basic 2D list operations: display, accessing parts,
copying the list

• Other composites: strings and tuples

When To Use Lists Of Different Dimensions
• It’s determined by the data – the number of categories of information

determines the number of dimensions to use.

• Examples:

• (1D list)
–Tracking grades for a class (previous example)

–Each cell contains the grade for a student i.e., grades[i]

–There is one dimension that specifies which student’s grades are being
accessed

• (2D list)
–Expanded grades program (table: grades for multiple lectures)

–Again there is one dimension that specifies which student’s grades are being
accessed

–The other dimension can be used to specify the lecture section

One dimension (which student)

10/30/2022

Composites 2

When To Use Lists Of Different Dimensions (2)

• (2D list continued)

Student

Lecture

section First

student

Second

student

Third

student
…

L01

L02

L03

L04

L05

:

L0N

When To Use Lists Of Different Dimensions (3)

• (2D list continued)

• Notice that each row is merely a 1D list

• (A 2D list is a list containing rows of 1D lists)

L02

L07

L01

L03

L04

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

Columns (e.g. grades)

Rows

(e.g.

lecture

section)

L06

L05

Important:

• List elements are

specified in the order of
[row] [column]

• Specifying only a single

set of brackets

specifies the row

10/30/2022

Composites 3

Creating And Initializing A Multi-Dimensional
List In Python (Fixed Size During Creation)

General structure
<list_name> = [[<value 1>, <value 2>, ... <value n>],

[<value 1>, <value 2>, ... <value n>],

: : :

: : :

[<value 1>, <value 2>, ... <value n>]]

Rows

Columns

Name of the example program: 1display2DList.py

Learning: creating, displaying a fixed size 2D list

table = [[0, 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

for r in range (0, 4, 1):

print (table[r]) #Each call to print displays a 1D list

for r in range (0,4,1):

for c in range (0,3,1):

print(table[r][c], end="")

print()

print(table[2][0]) #Displays 2 not 0

Creating And Initializing A Multi-Dimensional List In
Python (2): Fixed Size During Creation

r = 0

r = 1

r = 2

r = 3

r = 0

r = 1

r = 2

r = 3

0 1 2 (col)

c=0 c=1 c=2

#Displays a list element

10/30/2022

Composites 4

James Tam

2D Lists: Levels Of Access

table = [[0, 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

print(table) #Entire list

print(table[0]) #First row

print(table[3][1]) #4th row, 2nd column

print(table[0][0][0]) #What does this do?

table = [[["a","b"], 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

print(table[0][0][0]) #Now what does this do?

James Tam

Creating 2D Lists Via The Repetition Operator

Name of the example program:
2creatingListViaRepetition.py

Learning: creating a variable sized 2D list using the repetition
operator

MAX_COLUMNS = 5

MAX_ROWS = 3

ELEMENT = "*"

aList = []

r = 0

while (r < MAX_ROWS):

tempList = [ELEMENT] * MAX_COLUMNS

aList.append(tempList)

r = r + 1

10/30/2022

Composites 5

James Tam

How To Avoid Overflowing 2D Lists

• Employ named constants

• Recall that the previous example declared 2 named constants.
MAX_COLUMNS = 5

MAX_ROWS = 3

• Control access to list elements using these constants.
r = 0

while (r < MAX_ROWS):

c = 0

while (c < MAX_COLUMNS):

print(aList[r][c], end = "")

c = c + 1

print()

r = r + 1

James Tam

Copying Lists

• Important: A variable that appears to be a list is really a
reference to a list.
– Recall: the reference and the list are two separate memory locations!

matrix = [[0, 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

– Wrong way to ‘copy’ a 2D list

aList1 = aList2 (Why is this wrong? Hint: recall what is stored in

aList1 and aList1)

10/30/2022

Composites 6

James Tam

Copying Lists: Example

• Name of the example program: 3copyingListsBothWays.py

• This is the wrong way.

aGrid1 = create()

aGrid2 = aGrid1

aGrid1[3][3] = "!"

print("First list")

display(aGrid1)

print("Second list")

display(aGrid2)

FYI:
def create():

aGrid = [["*","*","*","*"],
["*","*","*","*"],
["*","*","*","*"],
["*","*","*","*"]]

return(aGrid)

James Tam

• Shallow copy: copies what’s stored in the reference (location
of a list).

• Deep copy: copies the data from one list to another.
– Create a new list e.g. aList2 = [0]*3

– Copy each piece of data (list elements) from one list to another e.g.
aList2[0] = aList1[0]

New Terminology

Code
aList1 = [1,2,3]
aList2 =aList1

aList1 [1, 2, 3]

aList2

aList1 [1, 2, 3]

aList2 [0, 0, 0]

10/30/2022

Composites 7

James Tam

Copying Lists: Example (2)

• This is the right way.
aGrid1 = create()

aGrid2 = create()

copy(aGrid1,aGrid2)

copy(aGrid1,aGrid2)

aGrid1[0][0] = "?" #These statements prove there’s two lists

aGrid1[3][3] = "?"

print("First list")

display(aGrid1)

print("Second list")

display(aGrid2)

def copy(destination,source):
for r in range (0,SIZE,1):

for c in range (0,SIZE,1):
destination[r][c] = source[r][c]

James Tam

Copying Lists: Write The Code Yourself

• For this class you should not use some else’s pre-created list
copy method (e.g. those defined when you “import copy”)

• Not all programming languages have this capability (you will
need to know how to do it yourself).

• Writing the code yourself will provide you with extra practice
and help you become more familiar with list (in other
languages ‘array’) operations.

10/30/2022

Composites 8

Extra Practice

List operations:
– For a numerical list: implement some common mathematical functions

(e.g., average, min, max, mode – last one is challenging).

– For any type of list: implement common list operations (e.g., displaying
all elements one at a time, inserting elements at the end of the list,
insert elements in order, searching for elements, removing an element,
finding the smallest and largest element).

• In order to develop your programming skills you should write the code
yourself rather than using predefined python methods such as append, min,
max etc.

After This Sub-Section You Should Now Know

• When to use lists of different dimensions

• Basic operations on a 2D list

• How to create a 2D list: fixed size and a variable sized list by
using the repetition operator.

• How to access a 2D list: the whole list, rows in the list and
individual elements

• How to properly copy the contents of a 2D list into another 2D
list as well as a common mistake when copying lists

