Composites

Composite Types, Lists Part 2

* When to use multi-dimensional lists
* Creating 2D lists
* How to access a 2D list and its parts

* Basic 2D list operations: display, accessing parts,
copying the list

* Other composites: strings and tuples

When To Use Lists Of Different Dimensions

* It’s determined by the data —the number of categories of information
determines the number of dimensions to use.
* Examples:
e (1D list)
—Tracking grades for a class (previous example)
—Each cell contains the grade for a student i.e., grades[i]

—There is one dimension that specifies which student’s grades are being
accessed

One dimension (which student)

e (2D list)
—Expanded grades program (table: grades for multiple lectures)

—Again there is one dimension that specifies which student’s grades are being
accessed

—The other dimension can be used to specify the lecture section

10/30/2022

Composites

When To Use Lists Of Different Dimensions (2)

* (2D list continued)

Lecture
Section

Student

First Second | Third
student |student |student

LO1

LO2

LO3

LO4

LO5

LON

When To Use Lists Of Different Dimensions (3)

* (2D list continued)
* Notice that each row is merely a 1D list

* (A 2D listis a list containing rows of 1D lists)

(]
(1
(2]
(3]
(4]
(5]
(6]

Columns (e.g. grades)
A

- (0]

(1]

(2]

Lo1

L02

LO3

LO4

LO5

LO6

LO7

Important:

* List elements are

specified in the order of
[row] [column]

+ Specifying only a single

set of brackets
specifies the row

Rows
(e.g.
lecture
section)

10/30/2022

Composites

Creating And Initializing A Multi-Dimensional
List In Python (Fixed Size During Creation)

General structure

<list_name> = [[<value 1>, <value 2>, ... <value n>],
[<value 1>, <value 2>, ... <value n>],
Rows
[<value 1>, «<value 2>, ... <value n>]]
N ~ J
Columns

Creating And Initializing A Multi-Dimensional List In
Python (2): Fixed Size During Creation
Name of the example program: 1display2DList.py

Learning: creating, displaying a fixed size 2D list
table = [[0, 0, 0],

[1, 1, 1], ree
(2, 2, 21, ...
[3, 3, 31]

for r in range (0, 4, 1)ir =3
print (table[r]) #Each call to print displays a 1D list

for r in range (0,4,1): (col)
for c in range (0,3,1): r=o (MU
print(table[r][c], end="") r=1
print() r=2
#Displays a list element r=3

print(table[2][@]) #Displays 2 not ©

10/30/2022

Composites

2D Lists: Levels Of Access

table = [[0, 0, @],
[1, 1, 1],
[2, 2, 2],
[3, 3, 3]]
print(table) #Entire list
print(table[0]) #First row

print(table[3][1]) #4t" row, 2" column
print(table[0][0][©]) #What does this do?

TypeError: "int' object is not subscriptable

table = [[["a","b"], @, @],
[1, 1, 1],
[2, 2, 21,
[3, 3, 3]]

print(table[0][@][©]) #Now what does this do?

James Tam

Creating 2D Lists Via The Repetition Operator

Name of the example program:
2creatinglistViaRepetition.py

Learning: creating a variable sized 2D list using the repetition
operator

MAX_COLUMNS = 5

MAX_ROWS = 3
ELEMENT = "*"
aList = []
r=20

while (r < MAX_ROWS):
templList = [ELEMENT] * MAX_COLUMNS
alList.append(tempList)
r=r+1

James Tam

10/30/2022

Composites

How To Avoid Overflowing 2D Lists

* Employ named constants

* Recall that the previous example declared 2 named constants.
MAX_COLUMNS = 5
MAX_ROWS = 3

* Control access to list elements using these constants.
r=20
while (r < MAX_ROWS):

c=20

while (c < MAX_COLUMNS):
print(aList[r][c], end = "")
c=c+1

print()

r=r+1

James Tam

Copying Lists

* Important: A variable that appears to be a list is really a
reference to a list.
— Recall: the reference and the list are two separate memory locations!
matrix = [[0, @, @],
[1, 1, 1],
[2, 2, 2],
[3, 3, 3]]
— Wrong way to ‘copy’ a 2D list
alistl = alist2 (Whyis this wrong? Hint: recall what is stored in
aListlandalistl)

James Tam

10/30/2022

Composites

Copying Lists: Example

* Name of the example program: 3copyinglListsBothWays.py

* This is the wrong way. 4 EYI:
def create():

aGridl = create() i R
aGrid2 = aGridi [****]
aGrid1[3][3] = "!" [ron, ok e k]
print("First list") return(aGrid)
display(aGridl)
print("Second list")
display(aGrid2)

James Tam

New Terminology

* Shallow copy: copies what’s stored in the reference (location

of a list).

Code
alistl = [1,2,3]
alist2 =alistl

alistl——[1, 2, 3]

alist2 /

* Deep copy: copies the data from one list to another.
— Create a new list e.g. aList2 = [0]*3

— Copy each piece of data (list elements) from one list to another e.g.
aList2[@] = alListl[Q]
alistl——[1, 2, 3]

alist2—10, 0, 0]

James Tam

10/30/2022

Composites

Copying Lists: Example (2)

* Thisis the
aGridl = create()
aGrid2 = create()
copy(aGridl,aGrid2)

def copy(destination,source):
for r in range (0,SIZE,1):
for c in range (0,SIZE,1):

copy(aGridl,aGrid2)

aGridif[e][e] "?" #These statements prove there’s two lists
aGrid1[3][3] A

print("First list")

display(aGridl)

print("Second list")

display(aGrid2)

James Tam

Copying Lists: Write The Code Yourself

* For this class you should not use some else’s pre-created list
copy method (e.g. those defined when you “import copy”)

* Not all programming languages have this capability (you will
need to know how to do it yourself).

* Writing the code yourself will provide you with extra practice
and help you become more familiar with list (in other
languages ‘array’) operations.

James Tam

10/30/2022

Composites

Extra Practice

List operations:

— For a numerical list: implement some common mathematical functions
(e.g., average, min, max, mode — last one is challenging).

— For any type of list: implement common list operations (e.g., displaying
all elements one at a time, inserting elements at the end of the list,
insert elements in order, searching for elements, removing an element,
finding the smallest and largest element).

* In order to develop your programming skills you should write the code
yourself rather than using predefined python methods such as append, min,
max etc.

After This Sub-Section You Should Now Know

* When to use lists of different dimensions

* Basic operations on a 2D list

* How to create a 2D list: fixed size and a variable sized list by
using the repetition operator.

* How to access a 2D list: the whole list, rows in the list and
individual elements

* How to properly copy the contents of a 2D list into another 2D
list as well as a common mistake when copying lists

10/30/2022

