
10/22/2020

VBA programming: Part I 1

VBA Programming: Part II

How to win friends using functions and influence
people using methods (not really but it sounds
catchier than how to use pre-created functions
and methods to do neat stuff)

Online support: https://support.office.com/en-
US/article/create-or-run-a-macro-c6b99036-
905c-49a6-818a-dfb98b7c3c9c

Review: Lookup Tables (For Constants)

• Excel: Lookup tables are used to define values that do not
typically change but are referred to in multiple parts of a
spreadsheet.

https://support.office.com/en-US/article/create-or-run-a-macro-c6b99036-905c-49a6-818a-dfb98b7c3c9c

10/22/2020

VBA programming: Part I 2

Named Constants

• They are similar to variables: a memory location that’s been
given a name.

• Unlike variables constants cannot change.
–VBA makes a memory location unchanging when the Const keyword is

used

• The naming conventions for choosing variable names generally
apply to constants but constants should be all UPPER CASE.
(You can separate multiple words with an underscore).
–This isn’t a usual Visual Basic convention but since it’s very common with

most other languages, you will be required to follow it for this class.

• Example Const PI = 3.14

–PI = Named constant, 3.14 = Unnamed constant

• They are capitalized so the reader of the program can quickly
distinguish them from variables.

Declaring Named Constants

• Learning objective: how to declare constant.

• Format:

const <Name of constant> as <Data type> = <Expression>1

JT: it’s preceded by the keyword ‘const’ to indicate that it is a

constant/unchanging.

• Example:
const PI As Double = 3.14

1 The expression can be any mathematical operation but can’t be the result of a function call

10/22/2020

VBA programming: Part I 3

Why Use Named Constants

• They can make your programs easier to read and understand

• Example:
Income = 315 * 80

Vs.

Income = WORKING_DAYS_PER_YEAR * DAILY_PAY

No 

Yes 

Why Use Named Constants

• Updating the initial value for a named constant will update it throughout
the program wherever the constant is referred to.

• Learning objective: Shows you how/why use named constants

• Name of the Word document containing the program:
1Constants.docm

Const TAX_RATE As Double = 0.2

Dim grossIncome As Long

Dim taxOwed As Long

Dim incomeAfterTax As Long

grossIncome = 100

taxOwed = grossIncome * TAX_RATE

incomeAfterTax = grossIncome - taxOwed

MsgBox (grossIncome & " " & taxOwed & " " & _

incomeAfterTax & " " & TAX_RATE)

10/22/2020

VBA programming: Part I 4

Example: A Person

Example properties (information in
VBA known as attributes):
• Age
• Height
• Name
• Hair color
• …

Example actions (actions in VBA
known as ‘methods’):
• Walk
• Talk
• Eat
• Sleep
• Drink
• Excrete
• …

VBA Object

• Similar to everyday objects VBA-Objects have
attributes and actions
– Attributes: information that describe the object.

• E.g., the name of a document, size of the document, date
modified, number of words etc.

– Methods: actions that can be performed (sometimes
referred to as ‘functions’ or ‘procedures’ or
‘subroutines’ depending upon the language).

• E.g., save, print, spell check etc.

10/22/2020

VBA programming: Part I 5

Common VBA Objects

• Application: the MS-Office program running (for CPSC 203
it will always be MS-Word)

• ActiveDocument

• Selection

• When enter one of these keywords in the editor followed by
the ‘dot’ you can see more information.

Take advantage of the benefits of VBA:
1. The list of properties and methods is a

useful reminder if you can’t remember
the name

2. If you don’t see the pull down then this is
clue that you entered the wrong name
for the object

Example: What Are The Three Objects

• Application:
•MS-Word

• Active/current
Document:

•“tam template”

• Selection
•“Foo!”

10/22/2020

VBA programming: Part I 6

Using Pre-Built Capabilities/Properties Of Objects

• Format:
<Object name>.<method or attribute name>

• Example:
Sub ApplicationTest()

MsgBox (Application.Windows.Count)

End Sub

Application.Windows.Count

Object referred to:
‘Application’

Accessing the Windows property of Word (the
application)
• Info about the windows currently opened

Property of Window:
• Number

Attributes Vs. Methods/Functions

• Recall
– Property: information about an object

– Method: capabilities of an object (possible actions)

Property:
current cell

Using the
‘average()’
function

10/22/2020

VBA programming: Part I 7

The Application Object

• As mentioned this object is the VBA application running e.g. MS-Word

• Learning objective: accessing a part (attribute) of an object

• Program illustrating an example usage: 2applicationObject.docm

Sub ApplicationTest()

MsgBox (Application.Windows.Count)

End Sub

Application.Windows.Count

Object referred to:
‘Application’

Accessing the Windows property of Word (the
application)
• Info about the windows currently opened

Property of Window:
• Number

Introduction To The ActiveDocument Object

• Quick recap: although you may have many documents open,
the ‘active document’ is the document that you are currently
working with:

– Because it may be easy to confuse documents it’s best to only have a
single Word document open when writing a VBA program.

The active
document

10/22/2020

VBA programming: Part I 8

Attributes Of The ActiveDocument Object

• Application: the application/program associated with the document (useful if a
VBA macro is linking several applications):details on next slide

• Content: the data (text) of the currently active document (needed if you want to
perform a text search ‘Find’ in a VBA program):details later in these notes

• Name: the (file) name of the current document (useful for determining the active
document if multiple documents are currently open): next slide

• Path: the save location of the active document e.g. C:\Temp\ :details on next slide

• FullName: the name and save location of the current document :details on next slide

• HasPassword: true/false that document is password protected: details on next slide

• SpellingChecked: true/false document has been spell checked since document was
last edited: :next slide

• SpellingErrors.Count: the number of typographical errors

Note: Information for these attributes/properties can be viewed by passing the information
as a parameter to a message box
Format: MsgBox (ActiveDocument.<Attribute Name>)
Example: MsgBox (ActiveDocument.SpellingErrors.Count)

Example Of Accessing Attributes

• Learning objective: accessing some common attributes of the
ActiveDocument object (e.g. accessing document name, path).

• Program illustrating an example usage:
3activeDocumentAttributes.docm

Sub activeDocumentAttributes()

MsgBox (ActiveDocument.Application)

MsgBox (ActiveDocument.Name)

MsgBox (ActiveDocument.Path)

MsgBox (ActiveDocument.FullName)

MsgBox ("Spell checked? " & _

ActiveDocument.SpellingChecked)

MsgBox ("Password protected? " & _

ActiveDocument.HasPassword)

MsgBox ("# typos=" & ActiveDocument.SpellingErrors.Count)

End Sub

10/22/2020

VBA programming: Part I 9

Some Methods Of The ActiveDocumentObject

• Checkspelling(): exactly as it sounds: next slide

• Close(): closes the active document (different options available)

• CountNumberedItems(): number of bulleted and numbered elements: next
slide

• DeleteAllComments(): removes comments from the current document: next
slide

• Printout(): prints current active document on the default printer : next slide

• Save(): saves the current document under the same name: next slide

• SaveAs2(): saves the current document under a different name: : next slide

• Select(): select all text in the active document

• SendMail(): sends an email using MS-Outlook, the currently active document
becomes a file attachment

• ComputeStatistics(wdStatisticWords): counts the number of words in a
document.

Example Of Using Methods

• Learning objective: accessing some common methods of the
ActiveDocument object.

• Program illustrating an example usage:
4activeDocumentMethods.docm

Sub activeDocumentAttributes()

ActiveDocument.CheckSpelling

MsgBox (ActiveDocument.CountNumberedItems)

ActiveDocument.DeleteAllComments

ActiveDocument.PrintOut

ActiveDocument.Save

ActiveDocument.SaveAs2 ("Copy")

ActiveDocument.Range.ComputeStatistics(wdStatisticWords)

End Sub

10/22/2020

VBA programming: Part I 10

ActiveDocument.SendMail()

• Runs the default email program

• The active document automatically becomes an attachment

• Subject line = name of document

• (For anything more ‘fancy’ you should use VBA to create and
access an MS-Outlook object)

Closing The Active Document

• Default action when closing a MS-Word document that has
been modified (prompt)

• VBA code to close a document in this fashion:
ActiveDocument.Close (wdPromptToSaveChanges)

One closing option:
Allow the user to save

10/22/2020

VBA programming: Part I 11

Reinforcing Example: Using Pre-Defined Constants
(Closing Documents)

• Learning objectives: writing a VBA instruction to close the
currently active Word document, reinforcing the value of named
constants (in this case the constants have been predefined by
Microsoft).

• Word document containing the macro:
“5closingActions.docm”

Sub ClosingActions()

ActiveDocument.Close (<Selected option for closing action>)

End Sub

'Choose one action
wdPromptToSaveChanges
wdDoNotSaveChanges
wdSaveChanges

Opening A Document

• Given the name of a document a VBA program can be used to
open that document in Word.

• Learning objective: opening a user specified Word document
in the same folder that the currently active document resides.
– To avoid confusion make sure that the currently active document is the

one containing this VBA program.

– Click on the window for this Word document prior to running this
program.

Click

10/22/2020

VBA programming: Part I 12

Opening A Document (2)

• Word document containing the macro:
6openingUserSpecifiedDocument

Sub findHighLight()

Dim documentName As String

Dim path As String

path = ActiveDocument.path

documentName = InputBox("Name of Word document: ")

Documents.Open (path & "\" & documentName & ".docx")

End Sub

Formatting A Document

• Selected text:
– Only format the currently selected text via the ‘Selection’ object).

• Entire document:
– You first need to specify the document or part of a document to be

formatted

– One way is through the ‘ActiveDocument’ object

– Then choose the ‘Select’ method of that document.

• Review: it’s a method and not a property because it applies an action: select =
selecting the text of the entire document

10/22/2020

VBA programming: Part I 13

Introduction To The Selection Object

• This is the currently selected text in a document.
– It may be empty (nothing selected)

Basic Attributes Of The Selection Object

• Font.Name: specifies the type (name) of font

• Font.Size: specifies the font size

• Font.ColorIndex: specifies the color of the font

• Font.UnderLine: specifies the type of underlining to be
applied (or to remove underlining)

• Font.Bold: allows bolding to change (toggle or set)

Similar to how the Attributes/Properties of ActiveDocument
Object affect only the currently active document these
Attributes/Properties only take effect on the currently selected
text (if there’s any).

10/22/2020

VBA programming: Part I 14

Using The Selection Object Attributes

• Learning objective: changing the properties of fonts in Word

• Name of the Word document containing the program:
7selectionAttributes.docm

Sub selectionObjectAttributes()

' Selection.Font.Underline = <Selection for underlining>

' wdUnderlineNone, wdUnderlineSingle

' e.g. Selection.Font = wdUnderlineSingle

Selection.Font.Name = "Wingdings" 'Must be in quotes

Selection.Font.Size = 36

Selection.Font.ColorIndex = wdBlue

' Bolding options

Selection.Font.Bold = wdToggle ' On/off

Selection.Font.Bold = True ' Turn on (false = off)

End Sub

Seeing Color (And Under Line Options)

• Use the ‘auto complete’ feature of VBA to view the options

10/22/2020

VBA programming: Part I 15

Some Methods Of The Selection Object

• ClearFormatting: removes all formatting effects (e.g. bold,
italics)

• TypeText: insert the text specified in the VBA program

• Delete: deletes any selected text

• EndKey: move the cursor to the end of the document (covered in a
later and in a large example)

• HomeKey: move the cursor to the start of the document (covered
in a later and in a large example)

• InsertFile: replace selection with text from the specified file
(covered in a later example)

Similar to how the method of ActiveDocumentObject affect only
the currently active document these Attributes/Properties only take
effect on the currently selected text (if there’s any).

Using Simple Methods Of The Selection Object

• Learning objective: writing text into the active Word
document.

• Name of the Word document containing the program:
8selectionMethods.docm

• Try running it with and without some text selected

Sub selectionObjectMethod()

Selection.ClearFormatting

Selection.TypeText ("My new replacement text")

End Sub

10/22/2020

VBA programming: Part I 16

Formatting Text (Entire Active Document): An
Example

• Objective:
– Suppose you want to format a document in the following way

– Entire document

• Font = Calibri

Formatting: Entire Document

• As mentioned the entire document can be selected.

• Now for the ‘selected text’ (in this case it’s the whole
document) access the ‘Font’ property and the ‘Name’
property of that font and give it the desired name.

• Learning objective: on the previous page.

• Word document containing the macro:
9formattingEntireDocument.docm
Sub formattingEntireDocument()

ActiveDocument.Select

Selection.Font.Name = "Calibri"

' The previously covered ways of formatting selected text

' can then be run.

ActiveDocument.Select

Selection.Font.Name = "Calibri"

10/22/2020

VBA programming: Part I 17

Writing Text To Start/End

• Learning objective: moving the selection (cursor) to the start
or end of the currently active document.

• Name of the Word document containing the program:
10selectionHomeEndKey.docm
– HomeKey docs: https://msdn.microsoft.com/en-us/library/office/ff192384.aspx

– EndKey docs: https://msdn.microsoft.com/en-us/library/office/ff195593.aspx

Sub selectionHomeEndKey()

Const SONG_TITLE = "You're not here"

Const SONG_LYRICIST = "Akira Yamaoka"

Selection.HomeKey Unit:=wdStory

Selection.TypeText (SONG_TITLE)

Selection.EndKey Unit:=wdStory

Selection.TypeText (SONG_LYRICIST & vbCr & "!")

End Sub

vbCr (line break) = hitting enter

Automatically Inserting Text Into A Word Document

• Learning objective: inserting the text containing in different
types of files (Word document, rich text file, plain text file) into
the currently active Word document.

• Name of the Word document containing the program:
11selectionInsertingText.docm

10/22/2020

VBA programming: Part I 18

Inserting Text Into One Document From Other
Documents

• Example files (must all be in the same folder)

Text input1

11input1.docx

Text input2

11input2.rtf

Text input3

11input3.txt

Word docm document (VBA
program:
11selectionInsertingText)

Types of files used as input for
the program in this example:
• 11input1.docx = Word

2007 document
• 11input2.rtf = Rich

text file
• 11input3.txt – Text

document (no
formatting).

“Finding” Things In A Document

• Example: ‘find’ can also be performed by using the
Selection object but I prefer this approach.

• Find by using the ActiveDocument object
– ‘Find’ is an object that is part of the ‘Content’ object of the

‘ActiveDocument’

– ActiveDocument.Content.Find

One source of information:
http://msdn.microsoft.com/en-us/library/office/aa211953(v=office.11).aspx

http://msdn.microsoft.com/en-us/library/office/aa211953(v=office.11).aspx

10/22/2020

VBA programming: Part I 19

Find: Single Replacement

• Learning objective: finding & replacing an instance of text,
splitting long instructions onto multiple lines.

• Word document containing the macro:
12simpleFind.docm

sub simpleFind()

ActiveDocument.Content.Find.Execute _

FindText:="tamj",ReplaceWith:="tam"

end Sub

'The instruction can be broken into two lines without causing

'An error by using an underscore as a connector

ActiveDocument.Content.Find.Execute _

FindText:="tamj", ReplaceWith:="tam"

Background for example:
• My old email address (still works):

tamj@cpsc.ucalgary.ca
• My new email address:

tam@ucalgary.ca
• Incorrect variant:

tamj@ucalgary.ca

More Complex Find And Replace: Case Sensitive

• Learning objective: a case sensitive find-replace.

• Word document containing the macro:
13findReplaceAllCaseSensitive.docm

Sub findReplaceAllCaseSensitive()

ActiveDocument.Content.Find.Execute FindText:="tamj", _

ReplaceWith:="tam", Replace:=wdReplaceAll, _

MatchCase:=True

End Sub

Before After

mailto:tamj@cpsc.ucalgary.ca
mailto:tam@ucalgary.ca

10/22/2020

VBA programming: Part I 20

With, End With

• For ‘deep’ commands that require many levels of ‘dots’, the ‘With’, ‘End With’
can be a useful abbreviation.

• Example

With ActiveDocument.Content.Find

.Text = "tamj"

Equivalent to (if between the ‘with’ and the ‘end with’:

ActiveDocument.Content.Find.Text = "tamj"

• Previous example, the ‘Find’ employing ‘With’, ‘End With’:

• Also the search and replacement text are specified separately to shorten the ‘execute’
(the “ActiveDocument.Content.Find” listed once)

With ActiveDocument.Content.Find

.Text = "tamj"

.Replacement.Text = "tam"

.Execute MatchCase:=True, Replace:=wdReplaceAll

End With

‘Find text’ and
‘replacement text’
moved here to
simplify the

‘.execute’

Complete original command
ActiveDocument.Content.Find.Execute

Find And Replace

• It’s not just limited to looking up text.

• Font effects e.g., bold, italic etc. can also be ‘found’ and
changed.

10/22/2020

VBA programming: Part I 21

Finding And Replacing Bold Font

• Learning Objective: find/replace font effects (e.g. bolding).

• Word document containing the macro: 14findBold.docm
'Removes all bold text

Sub findBold()

With ActiveDocument.Content.Find

.Font.Bold = True

With .Replacement

.Font.Bold = False

End With

.Execute Replace:=wdReplaceAll

End With

End Sub

Finding/Replacing Formatting Styles

• You already have a set of pre-created formatting styles defined
in MS-Word.

• You can redefine the characteristic of a style if you wish.

• Assume for this example that you wish to retain all existing
styles and not change their characteristics.

• But you want to replace all instances of one style with another
style e.g., all text that is ‘normal’ is to become ‘TamFont’

• ‘Find’ can be used to search (and replace) instances of a
formatting style.

10/22/2020

VBA programming: Part I 22

Finding/Replacing Formatting Styles (2)

• Learning objective: finding & replacing instances of a text style.
• Word document containing the macro:
15findReplaceStyle.docm
Sub findReplaceStyle()

With ActiveDocument.Content.Find
.Style = "Normal"
With .Replacement

.Style = "TamFont"
End With
.Execute Replace:=wdReplaceAll

End With
End Sub

BEFORE AFTER

‘Normal’
style
becomes
‘TamFont
’

Highlighting ‘Found’ Text

• Learning objective: finding text and visually highlighting the
text to make it stand out.

• Word document containing the macro:
16findReplaceStyle.docm
Sub findHighLight()

Dim searchWord As String

Dim fontSize As Long

searchWord = InputBox("Enter word to emphasize: ")

10/22/2020

VBA programming: Part I 23

Highlighting ‘Found’ Text (2)

With ActiveDocument.Content.Find

.Text = searchWord

.Replacement.Font.Bold = True

.Replacement.Font.ColorIndex = wdBlue

fontSize = Selection.Font.Size

.Replacement.Font.Size = fontSize + 4

.Forward = True

.MatchCase = False

.MatchWholeWord = True

.Execute Replace:=wdReplaceAll

End With

End Sub

Collections

• An object that consists of other objects
– Real World example: a book consists of pages, a library consists of books

• Example: The Documents collection will allow access to the
documents that have been opened in Word.

• Access to a collection rather than the individual objects may be
time-saving shortcut.
– Instead of manually closing all open documents this can be done in one

instruction:

Documents.close

• You have actually seen an example using the Documents
collection ‘open’ method:

– Documents.open<“Document name>”)

10/22/2020

VBA programming: Part I 24

Types Of Collections

• Some Attributes/Properties of a document that return a
collection.

• Documents: access to all the currently open documents

• Shapes: access to MS-Word shapes in a document (rectangles, circles
etc.): If there is time

• InlineShapes: access to images inserted into a Word document

• Tables: access to all tables in a document: If there is time

• E.g., ActiveDocument.Tables –accesses all the tables in your document

• ActiveDocument.Tables(1) –access to the first table in a document.

• Windows: briefly introduced at the start of this section of notes (as part of
the Applications object)

Documents Collection For Printing: Multiple
Documents

• Printing all the documents currently open in MS-Word.
– Take care that you don’t run this macro if you have many documents

open and/or they are very large!

– Also the program requires that you have at least 3 Word documents open
when you run it.

• Otherwise it will crash.

– Learning objective: printing open documents (first three).

– Word document containing the macro example:
“17printThreeDocuments.docm”

Sub PrintDocumentsCollection()

Documents.Item(1).PrintOut

Documents.Item(2).PrintOut

Documents.Item(3).PrintOut

End Sub

10/22/2020

VBA programming: Part I 25

Accessing Shapes And Images (For Fun And Profit)

• (VBA specific)
– Shapes (basic shapes that are drawn by Word)

– InlineShapes (images that are created externally and inserted into
Word)

• Both collections accessed via the ActiveDocument object:
– ActiveDocument.Shapes: access to all the shapes in the currently

active Word document

• ActiveDocument.Shapes(<index>): access to shape #i in the document

– ActiveDocument.InlineShapes: access to all the images in the
currently active Word document

• ActiveDocument.InlineShapes(<index>): access to image #i in the
document

Some Attributes/Properties InlineShapes & Shapes

• Common to Both:
– Height

– Width

– Example usage: ActiveDocument.InlineShapes(1).Height

– Count

– Example usage: ActiveDocument.Shapes.Count

• Shapes
– .Fill.ForeColor

– Example usage: ActiveDocument.Shapes(6).Fill.ForeColor = vbRed

10/22/2020

VBA programming: Part I 26

Example: Accessing Shapes And Images

Learning objective: accessing and modifying the images
(InlineShapes) and simple geometric shapes built into
Word (Shapes).

Word document containing the complete macro:
“18accessingImagesFigures.docm”

Sub accessImagesShapes()
Dim numImages As Integer
Dim numShapes As Integer

numImages = ActiveDocument.InlineShapes.Count
numShapes = ActiveDocument.Shapes.Count

MsgBox ("Images=" & numImages)
MsgBox ("Simple shapes=" & numShapes)

Example: Accessing Shapes And Images

' Double the height of the first and third image
ActiveDocument.InlineShapes(1).Height = _
ActiveDocument.InlineShapes(1).Height * 2

ActiveDocument.InlineShapes(3).Height = _
ActiveDocument.InlineShapes(3).Height * 2

' Modify the MS-Word 'Shapes
' Second shape increases in size by a factor of 4
ActiveDocument.Shapes(2).Width = _
ActiveDocument.Shapes(2).Width * 4

' Sixth shape colored red
ActiveDocument.Shapes(6).Fill.ForeColor = vbRed

End Sub

10/22/2020

VBA programming: Part I 27

Accessing Tables (If There Is Time)

• The tables in the currently active Word document can be made
through the ActiveDocument object:
– ActiveDocument.Tables: accesses the ‘tables’ collection (all the

tables in the document).

– ActiveDocument.Tables(<integer ‘i’>): accesses table # i in
the document

• i = 1 accesses the first table

• i = 2 accesses the second table

– ActiveDocument.Tables(1).Sort: sorts the first table in the
document (default is ascending order)

• Some attributes & methods of the Table collection
– Count (attribute) : the current number of tables in the collection

– Sort (method) : will arrange the tables in order (default is ascending
order)

Simple Example: Sorting Three Tables (If There Is
Time)

• Instructions needed for sorting 3 tables
ActiveDocument.Tables(1).Sort

ActiveDocument.Tables(2).Sort

ActiveDocument.Tables(3).Sort

Before After

10/22/2020

VBA programming: Part I 28

Full Example: Table (If There Is Time)

• Learning objective: sorting tables using the Tables collection.

• Word document containing the complete macro:
“19sortingTables.docm”

Dim numTables As Long

numTables = ActiveDocument.Tables.Count

MsgBox ("# tables to sort " & numTables)

MsgBox ("Sorting Table #1")

ActiveDocument.Tables(1).Sort

MsgBox ("Sorting Table #2")

ActiveDocument.Tables(2).Sort

MsgBox ("Sorting Table #3")

ActiveDocument.Tables(3).Sort

Result: Sorting Tables (If There Is Time)

• Before

• After

10/22/2020

VBA programming: Part I 29

After This Section You Should Now Know

• How to copy and run the pre-created lecture examples

• How the VB editor identifies programming errors

• How to create and execute simple VBA macros
– You should know that macros can be automatically recorded but specifics

will be covered in tutorial

– Manually entering programs into the VB editor yourself

• How to create/use a Message Box “MsgBox”

• How to use basic mathematical operators in VB expressions

• How to create and use variables

• Naming conventions for variables

After This Section You Should Now Know

• Objects
– Properties/attributes vs. methods

• Using common properties/attributes and methods of the
following objects
– Application

– ActiveDocument

– Selection

• Collections
– What are they

– What is the advantage in using them

– Common examples found in Word documents

10/22/2020

VBA programming: Part I 30

After This Section You Should Now Know (2)

• Using common collections in VBA
– Documents

– Shapes

– InLineShapes

– Tables

– Windows

Images

• “Unless otherwise indicated, all images were produced by
James Tam

slide 60

