1.0 dgentifbang e Classes e Recurements Document 107

~'——~f«e—w

e e

Fig. 3.18 | Obtaining user input from a dialog. (Part 2 of 2.)

Lines 10-11 use method showInputDialog of class JOptionPane 10 display a simple
input dialog containing a prompt and a field for the user to enter text, known as a text
field. The argument to showInputDialog is the prompt that indicates what the user
should enter. The user types characters in the text field, then clicks the OK button or
i presses the Enter key to return the String to the program. Method showInputDialog
‘ returns a String containing the characters typed by the user, which we store in variable
a name. [Note: If you press the Cancel button in the dialog, the method returns nu11 and the
program displays the word “null” as the name.]

] Lines 1415 use static String method format to return a String containing a
i greeting with the name entered by the user. Method format is similar to method
! System.out.printf, except that format returns a formatted String rather than dis-
;f playing it in a command window. Line 18 displays the greeting in a message dialog.
i
|

GUI and Graphics Case Study Exercise

3.1 Modify the addition program in Fig. 2.7 1o use dialog-based input with JOptionPane in-
: stead of console-based input using Scanner, Since method showInputDialeg only returns a String,
you must convert the String the user enters to an int for use in calculations. Method Inte-
ger.parselnt(Strings) takes a String argument Tepresenting an integer (c.g., the result of 30p-
tionPane. showInputDialog) and returns the value as an int. If the String does not conrtain a valid
integer, then the program will terminate with an error.

3.i¢ (Optional) Software Engineering Case Study:
identifying the Classes in a Requirements Document

Now we begin designing the ATM system that we introduced in Chapter 2. In this sec-
tion, we identify the classes that are needed to build the ATM system by analyzing the
nouns and noun phrases that appear in the requirements document. We introduce UML
class diagrams to model the relationships between these classes. This is an important first
step in defining the structure of our system.

Identifying the Classes in a System

We begin our OOD process by identifying the classes required to build the ATM system.
We will eventually describe these classes using UML class diagrams and implement these
classes in Java. First, we review the requirements document of Section 2.9 and idencify key
i nouns and noun phrases to help us identify classes that comprise the ATM system. We
may decide that some of these nouns and noun phrases are attributes of other classes in the
system. We may also conclude that some of the nouns do not correspond to parts of the
system and thus should not be modeled at all. Additional classes may become apparent to
g us as we proceed through the design process.

—c

oYL R

—

-y

108 Chapier 30 Imtacuction to Classes anc Coiects

Figure 3.19 lists the nouns and noun phrases found in the requirements document in
Section 2.9. We list them from left to right in the order in which we first encounter them
in the requirements document. We list only the singular form of each noun or noun phrase.

We create classes only for the nouns and noun phrases that have significance in the
ATM system. We do not need to model “bank” as a class, because the bank s not a part
of the ATM system—the bank simply wants us to build the ATM. “Customer” and “user”
also represent entities outside of the system—they are important because they interact
with our ATM system, but we do not need to model them as classes in the ATM software.
Recall that we modeled an ATM user (i.e., a bank customer) as the actor in the use case
diagram of Fig. 2.20.

We do not model “$20 bill” or “deposit envelope” as classes. These are physical
objects in the real world, but they are not part of what is being automated. We can ade-
quately represent the presence of bills in the system using an attribute of the class that
models the cash dispenser. (We assign atrributes to classes in Section 4.15.) For example,
the cash dispenser maintains a count of the number of bills it contains. The requirements
document does not say anything abour what the system should do with deposit envelopes
after it receives them. We can assume that simply acknowledging the receipt of an enve-
lope—an operation performed by the class that models the deposit slot—is sufficient to
represent the presence of an envelope inahe system. (We assign operations to classes in
Section 6.14.)

In our simplified ATM system, representing various amounts of “money,” including
the “balance” of an account, as attributes of other classes seems most appropriate. Like-
wise, the nouns “account number” and “PIN” represent significant pieces of information
in the ATM system. They are important attributes of a bank account. They do not, how-
ever, exhibit behaviors. Thus, we can most appropriately model them as actributes of an
account class.

Though the requirements document frequently describes a “cransaction” in a general
sense, we do not model the broad notion of a financial transaction ar this time. Instead,
we model the three types of transactions (i.e., “balance inquiry,” “withdrawal” and
“deposit”) as individual classes. These classes possess specific attributes needed for exe-
cuting the transactions they represent. For example, a withdrawal needs to know the
amount of money the user wants to withdraw. A balance inquiry, however, does not

bank money / funds account number

ATM screen PIN

user keypad bank database
customer cash dispenser balance inquiry
transaction $20 bill / cash withdrawal
account deposir slot deposit

balance deposit envelope

Fig. 3.19 | Nouns and noun phrases in the requirements document.

P
P
'
i
3
i
:
'
|
1

cer e the Cirsses a e renoonerments Document 109

require any additional data. Furthermore, the three transaction classes exhibit unique
behaviors. A withdrawal includes dispensing cash to the user, whereas a deposit involves
receiving deposit envelopes from the user. [Nose: In Section 10.9, we “factor out” common
features of all transactions into a general “transaction” class using the object-oriented con-
cept of inheritance.]

We determine the classes for our system based on the remaining nouns and noun
phrases from Fig. 3.19. Each of these refers to one or more of the following:

« ATM

* screen

¢ keypad

e cash dispenser

» deposit slot

* account

e bank databasc

e balance inquiry

» withdrawal

* deposit
The elements of this list are likely to be classes we will need to implement our system.

We can now model the classes in our system based on the list we have created. We cap-
italize class names in the design process—a UML convention—as we will do when we write
the actual Java code that implements our design. 1 the name of a class contains more than
one word, we run the words together and capitalize each word (e.g., MultipleWordName).
Using this convention, we create classes ATM, Screen, Keypad, CashDispenser, DepositSlot,
Account, BankDatabase, BalanceInquiry, Wi thdrawal and Deposit. We construct our

system using all of these classes as building blocks. Before we begin building the system, how-
ever, we must gain a better understanding of how the classes relate to one another.

Modeling Classes

The UML enables us to model, via ciass diugrams, the classes in the ATM system and their
interrelationships. Figure 3.20 represents class ATM. In the UML, each class is modeled as
a rectangle with three compartments. The top compartment contains the name of the class
centered horizontally in boldface. The middle compartment contains the class’s attributes.
(We discuss attributes in Section 4.15 and Section 5.11.) The bottom compartment con-
tains the class’s operations (discussed in Section 6.14). In Fig. 3.20, the middle and bot-

ATM

Fig. 3.20 | Representinga class in the UML using a class diagram.

R R

»

110 Chapter 3 introduction to Classes and Objects

tom compartments are empty because we have not yet determined this class’s ateributes
and operations.

Class diagrams also show the relationships berween the classes of the system,
Figure 3.21 shows how our classes ATM and Withdrawal relate 1o one another. For the
moment, we choose to model only this subset of classes for simplicity. We present a more
complete class diagram later in this section. Notice that the rectangles representing classes
in this diagram are not subdivided into compartments. The UML allows the suppression
of class artributes and operations in this manner to create more readable diagrams, when
appropriate. Such a diagram is said to be an elided diagram—one in which some infor-
mation, such as the contents of the second and third compartments, is not modeled. We
will place information in these compartments in Section 4.15 and Section 6.14.

In Fig. 3.21, the solid line that connects the two classes represents an association—a
relationship between classes. The numbers near each end of the line are multiplicity
values, which indicate how many objects of each class participate in the association. In this
case, following the line from one end to the other reveals that, at any given moment, one
ATM object participates in an association with either zero or one Wi thdrawal objects—zero
if the current user is not currently performing a transaction or has requested a different
type of transaction, and one if the user has requested a withdrawal. The UML can model
many types of multiplicity. Figure 3.22 lises and explains the multiplicicy types.

An association can be named. For example, the word Executes above the line con-
necting classes ATM and Withdrawal in Fig. 3.21 indicates the name of that association.
This part of the diagram reads “one object of class ATM executes zero or one objects of class
Withdrawal.” Note that association names are directional, as indicated by the filled arrow-
head—so it would be improper, for example, to read the preceding association from right
to left as “zero or one objects of class Wi thdrawal execute one object of class ATM.”

P "1 ' Executes B 0.l - - ‘ T
. ATM - ~ - Withdrawal
v tre heae e e currentTransaction .., . .. SO
Fig.3.21 | Class diagram showing an association among classes.

0 None
One
m An integer value
0.1 Zero or one
m,n morn
m.n At least m, but not more than n
* Any non-negative integer (zero or more)
0..* Zero or more (identical to *)
1.° One or more

Fig. 3.22 | Multiplicity types.

346 ldentifying tne Cassesnia kequitements Document 11

The word currentTransaction at the Withdrawal end of the association line in
Fig. 3.21 is a role name, which identifies the role the Withdrawal object plays in its rela-
tionship with the ATM. A role name adds meaning to an association between classes by
identifying the role a class plays in the context of an association. A class can play several
roles in the same system. For example, in a school personnel system, a person may play
the role of “professor” when relating to students. The same person may take on the role
of “colleague” when participating in a relationship with another professor, and “coach”
when coaching student athletes. In Fig. 3.21, the role name currentTransaction indi-
cates that the Withdrawal object participating in the Executes association with an object
of class ATM represents the transaction currently being processed by the ATM. In other
contexts, 2 Withdrawal object may take on other roles (e.g., the previous transaction).
Notice that we do not specify a role name for the ATM end of the Executes association.
Role names in class diagrams are often omitted when the meaning of an association is clear
without them.

In addition to indicating simple relationships, associations can specify more complex
relationships, such as objects of one class being composed of objects of other classes. Con-
sider a real-world automated teller machine. What “pieces” does a manufacturer put
together to build a working ATM? Our requirements document tells us that the ATM s
composed of a screen, a keypad, a cash dispenser and a deposit slot.

In Fig. 3.23, the solid diamonds attached to the association lines of class ATM indicate
that class ATM has a composition relationship with classes Screen, Keypad, CashDispenser
and DepositSlot. Composition implies a whole/part relationship. The class that has the
composition symbol (the solid diamond) on its end of the association line is the whole (in
this case, ATM), and the classes on the other end of the association lines are the parts—in
this case, classes Screen, Keypad, CashDispenser and DepositSlot. The compositions in
Fig. 3.23 indicate thatan object of class ATM is formed from one object of class Screen, one
object of class CashDispenser, one object of class Keypad and one object of class Depos-
itS1ot. The ATM “has 2" screen, a keypad, a cash dispenser and a deposit slot. The “has-
" relationship defines composition. (We will see in the “Sofrware Engineering Case
Study” section in Chapter 10 that the “is-a” relationship defines inheritance.)

Screen

o

| | | b FEEPEE.
DepositStot —e ATM @——— CashDispenser

Keypad

Fig. 3.23 | Class diagram showing composition relationships.

112 Chapter 3 Introduction to Classes and Objects

According to the UML specification (www.uml.org), composition relationships have
the following properties:

1. Only one class in the relationship can represent the whole (i.e., the diamond can
be placed on only one end of the association line). For example, either the screen
is part of the ATM or the ATM is part of the screen, but the screen and the ATM
cannot both represent the whole in the relationship.

2. The parts in the composition relationship exist only as long as the whole, and the
whole is responsible for the creation and destruction of its parts. For example, the
act of constructing an ATM includes manufacturing its parts. Furchermore, if the
ATM is destroyed, its screen, keypad, cash dispenser and deposit slot are also de-
stroyed.

3. A part may belong to only one whole at a time, although the part may be removed
and attached to another whole, which then assumes responsibility for the part.

The solid diamonds in our class diagrams indicate composition relationships that ful-
fill these three properties. If a “has-a” relationship does not satisfy one or more of these
criteria, the UML specifies that hollow diamonds be attached to the ends of association
lines to indicate aggregation—a weaker form of composition. For example, a personal
computer and a computer monitor partilipate in an aggregation relationship—the com-
puter “has a” monitor, but the two parts can exist independently, and the same monitor
can be attached to multiple computers at once, thus violating the second and third prop-
erties of composition. :

Figure 3.24 shows a class diagram for the ATM system. This diagram models most of
the classes that we identified earlier in this section, as well as the associations between them
that we can infer from the requirements document. [Note: Classes Bal ancelnquiry and
Deposit participate in associations similar to those of class Wi thdrawal, so we have chosen
to omit them from this diagram to keep the diagram simple. In Chapter 10, we expand
¢#<. our class diagram to include all the classes in the ATM system.]

Figure 3.24 presents a graphical model of the structure of the ATM system. This class
diagram includes classes BankDatabase and Account, and several associations that were
not present in either Fig. 3.21 or Fig. 3.23. The class diagram shows that class ATM has a
one-to-one relationship with class BankDatabase—one ATM object authenticates users
against one BankDatabase object. In Fig. 3.24, we also model the fact that the bank’s data-
base contains information about many accounts—one object of class BankDatabase par-
ticipates in a composition relationship with zero or more objects of class Account. Recall
from Fig. 3.22 that the multiplicity value 0.." at the Account end of the association
between class BankDatabase and class Account indicates that zero or more objects of class
Account take part in the association. Class BankDatabase has a one-to-many relationship
with class Account—the BankDatabase stores many Accounts. Similarly, class Account has
! a many-to-one relationship with class BankDatabase—there can be many Accounts stored
: in the BankDatabase. [Note: Recall from Fig. 3.22 that the mulciplicity value * is identical
; to 0..". We include 0..* in our class diagrams for clarity.)

Figure 3.24 also indicates that if the user is performing a withdrawal, “one object of
class Withdrawal accesses/modifies an account balance through one object of class Bank-
Database.” We could have created an association directly berween class Wi thdrawa) and
class Account. The requirements document, however, states that the “ATM must interact

3.10 ldentifying the Classes in 3 Requirements Document 113

|
1 ! -
Keypad . » 'CashDispenser e
. . . . l
DepositSiot Screen)
| | | 1
‘ ‘ ‘ 0.1 {o0.l
' [tes)
ATM . xecutes — With "',“l
- | - 0.1
Authenticates user against
|
" BankDatabase -
R, - Accesses/modifies an
Q account balance through
, }
Contains
0“.
Account

e pmiad 4 A e n

Fig. 3.24 | Class diagram for the ATM system model.

with the bank’s account information database” to perform transactions. A bank account
contains sensitive information, and systems engineers must always consider the security of
personal data when designing a system. Thus, only the BankDatabase can access and
manipulate an account directly. All other parts of the system must interact with the data-
base to retrieve or update account information (e.g., an account balance).

The class diagram in Fig. 3.24 also models associations between class Withdrawal and
classes Screen, Cashpispenser and Keypad. A withdrawal transaction includes prompting
the user to choose a withdrawal amount and receiving numeric input. These actions
require the use of the screen and the keypad, respectively. Furthermore, dispensing cash
to the user requires access to the cash dispenser.

Classes BalanceInguiry and Deposit, though not shown in Fig. 3.24, take part in
several associations with the other classes of the ATM system. Like class Wi thdrawal, each
of these classes associates with classes ATM and BankDatabase. An object of class Balance-
Inquiry also associates with an object of class Screen to display the balance of an account
to the user. Class Deposit associates with classes Screen, Keypad and DepositSlot. Like
withdrawals, deposit transactions require use of the screen and the keypad to display
prompts and receive input, respectively. To reccive deposit envelopes, an object of class
Deposit accesses the deposit slot.

We have now identified the classes in our ATM system (although we may discover
others as we proceed with the design and implementation). In Section 4.15, we determine
the attributes for each of these classes, and in Section 5.11, we use these ateributes to
examine how the system changes over time.

114 Chapter 3 Introduction to Classes and Objects

Software Engineering Case Study Self-Review Exercises

3.1 Suppose we have a class Car that represents a car. Think of some of the different pieces that
a manufacturer would put together to produce a whole car. Create a class diagram (similar 1o
Fig. 3.23) that models some of the composition relationships of class car,

3.2 Suppose we have a class File that represents an electronic document in a standalone, non-
nerworked computer represented by class Computer. What sort of association exists between class
Computer and class File?

a) Class Computer has a one-to-one relationship with class File.

b) Class Computer has a many-to-one relationship with class File.

¢) Class Camputer has a one-to-many relationship with class File.

d) Class Computer has a many-to-many relationship with class File.

3.3 State whether the following statement is rrue or false, and if false, explain why: A UML di-
agram in which a class’s second and third compartments are not modeled is said to be an elided di-
agram.

3.4 Modify the class diagram of Fig. 3.24 to include class Deposit instead of class Withdrawal.

Answers to Software Engineering Case Study Self-Review Exercises

3.1 [Note: Student answers may vary.] Figure 3.25 presents a class diagram that shows some of
the composition relationships of a class Car. *

3.2 c [Note: In a computer network, this relationship could be many-to-many.]

3.3 True, _

3.4 Figure 3.26 presents a class diagram for the ATM including class Deposit instead of class

Withdrawal (as in Fig. 3.24). Note that Deposit does not access CashDispenser, but does access De-
positSlot.

3.11 Wrap-Up
% In this chapter, you learned the basic concepts of classes, objects, methods and instance
" variables—these will be used in most Java applications you create. In particular, you
learned how to declare instance variables of a class to maintain dara for each object of the
class, and how to declare methods chat operate on that data. You learned how to call a

P L]

e F L 4
*~—2" . SeatBalt .}

SRR

ShearingWheel g <

LRCIAY

PRSI

P R

Fig. 3.25 | Class diagram showing composition relationships of a class Car

3.1 Wrap-Up 115

Keypad CashDispenser

0.1 0. 0.1
Executes o cooy o E

ATM 0.1 ‘ .

P L et Sm s FAIRIIMALNSTRE I T St E

1 0.l

-
L &

Authenticates user against
!

" BankDatabase -
e e g Accessesimodifies an
account balance through
Contains
Yio-
Account

d e et e ey

Fig. 3.26 | Class diagram for the ATM system model including class Deposit.

method to tell it to perform its task and how to pass information to methods as arguments.
You learned the difference between a local variable of a method and an instance variable
of a class and that only instance variables are initialized automatically. You also learned
how to use a class’s constructor to specify the initial values for an object’s instance vari-
ables. Throughout the chapter, you saw how the UML can be used to create class diagrams
that model the constructors, methods and attributes of classes. Finally, you learned about
floating-point numbers—how to store them with variables of primitive type double, how
to input them with a Scanner object and how to format them with printf and format
specifier %f for display purposes. In the next chapter we begin our introduction to control
statements, which specify the order in which a program’s actions are performed. You will
use these in your methods to specify how they should perform their tasks.

Summary

o Performing a task in a program requires a method. Inside the method you put the mechanisms
that make the method do its tasks—that is, the method hides the implementation details of the
tasks that it performs.

¢ The program unit that houses a method is called a class. A class may contain one or more meth-
ods that are designed to perform the class’s tasks.

+ A method can perform a task and return a result,

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved

