
CPSC 233: Intro to O-O part 2
1

James Tam

Introduction To Object-Oriented
Programming

Part III: You will learn the standard
graphical notation for representing classes

(UML), why should attributes be set to
private in a class definition, what

documentation to write for each class, good
style conventions for writing functions or

methods.

James Tam

Graphical Summary Of Classes

• UML (Unified modeling language) class diagram
- Source “Fundamentals of Object-Oriented Design in UML” by Booch,

Jacobson, Rumbaugh (Dorset House Publishing: a division of Pearson)
2000

- UML class diagram provides a quick overview about a class (later you
we’ll talk about relationships between classes)

• There’s many resources on the Safari website:
- http://proquest.safaribooksonline.com.ezproxy.lib.ucalgary.ca/

- Example “Sams Teach Yourself UML in 24 Hours, Third Edition”
(concepts)

- Hour 3: Working with Object-Orientation

- Hour 4: Relationships

- Hour 5: Interfaces (reference for a later section of notes “hierarchies”)

http://proquest.safaribooksonline.com.ezproxy.lib.ucalgary.ca/

CPSC 233: Intro to O-O part 2
2

James Tam

UML Class Diagram

<Name of class>

-<attribute name>: <attribute type>

+<method name>(p1: p1type; p2 : p2 type..) :

<return type>

Person
-age:int

+getAge():int

+getFriends():Person []

+setAge(anAge:int):void

James Tam

Why Bother With UML?

• It combined a number of different approaches and has
become the standard notation.

• It’s the standard way of specifying the major parts of a software project.

• Graphical summaries can provide a useful overview of a
program (especially if relationships must be modeled)
- Just don’t over specify details

CPSC 233: Intro to O-O part 2
3

James Tam

Back To The ‘Private’ Keyword

• It syntactically means this part of the class cannot be accessed
outside of the class definition.
- You should always do this for variable attributes, very rarely do this for

methods (more later).

• Example
public class Person {

private int age;

public Person() {

age = 12; // OK – access allowed here

}

}

public class Driver {

public static void main(String [] args) {

Person aPerson = new Person();

aPerson.age = 12; // Syntax error: program won’t

// compile!

}

}

James Tam

New Term: Encapsulation/Information Hiding

•Protects the inner-workings (data) of a class.

•Only allow access to the core of an object in a controlled
fashion (use the public parts to access the private sections).
-Typically it means public methods accessing private attributes via
accessor and mutator methods.

-Controlled access to attributes:
•Can prevent invalid states
•Reduce runtime and logic errors

private

data

public

method

public

method

public

method

set data

(mutator

method)

get data

(accessor

method)

CPSC 233: Intro to O-O part 2
4

James Tam

How Does Hiding Information Protect Data?

• Protects the inner-workings (data) of a class
- e.g., range checking for inventory levels (0 – 100)

• Name of the folder containing the complete example:
fifth_noProtection

Driver Inventory
+stockLevel: int

+Inventory()

James Tam

Class Inventory

public class Inventory

{

public int stockLevel;

public Inventory()

{

stockLevel = 0;

}

}

CPSC 233: Intro to O-O part 2
5

James Tam

Class Driver

public class Driver

{

public static void main(String [] args)

{

Inventory chinook = new Inventory();

chinook.stockLevel = 10;

System.out.println("Stock: " + chinook.stockLevel);

chinook.stockLevel = chinook.stockLevel + 10;

System.out.println("Stock: " + chinook.stockLevel);

chinook.stockLevel = chinook.stockLevel + 100;

System.out.println("Stock: " + chinook.stockLevel);

chinook.stockLevel = chinook.stockLevel - 1000;

System.out.println("Stock: " + chinook.stockLevel);

}

}

James Tam

Utilizing Information Hiding: An Example

•Name of the folder containing the complete example:
sixth_encapsulation

+MIN: int

+MAX: int

+CRITICAL: int

-stockLevel: int

+inventoryTooLow():boolean

+add(amount : int)

+remove(amount : int)

+showStockLevel()

Inventory

Driver

CPSC 233: Intro to O-O part 2
6

James Tam

Class Inventory

public class Inventory

{

public final int CRITICAL = 10;

public final int MIN = 0;

public final int MAX = 100;

private int stockLevel = 0;

public boolean inventoryTooLow()

{

if (stockLevel < CRITICAL)

return(true);

else

return(false);

}

James Tam

Class Inventory (2)

public void add(int amount)

{

int temp;

temp = stockLevel + amount;

if (temp > MAX)

{

System.out.println();

System.out.print("Adding " + amount +

" item will cause stock ");

System.out.println("to become greater than " + MAX + "

units (overstock)");

}

else

{

stockLevel = temp;

}

}

CPSC 233: Intro to O-O part 2
7

James Tam

Class Inventory (3)

public void remove(int amount)

{

int temp;

temp = stockLevel - amount;

if (temp < MIN)

{

System.out.print("Removing " + amount +

" item will cause stock ");

System.out.println("to become less than " + MIN + " units

(understock)");

}

else

{

stockLevel = temp;

}

}

public String showStockLevel()

{

return("Inventory: " + stockLevel);

}

}

James Tam

The Driver Class

public class Driver

{

public static void main(String [] args)

{

Inventory chinook = new Inventory();

chinook.add(10);

System.out.println(chinook.showStockLevel());
chinook.add(10);

System.out.println(chinook.showStockLevel());

chinook.add(100);

System.out.println(chinook.showStockLevel());

chinook.remove(21);

System.out.println(chinook.showStockLevel());

// JT: The statement below won't work and for good reason!

// chinook.stockLevel = -999;

}

}

CPSC 233: Intro to O-O part 2
8

James Tam

Add(): Try Adding 100 items to 20 items

public void add(int amount)

{

int temp;

temp = stockLevel + amount;

if (temp > MAX)

{

System.out.println();

System.out.print("Adding " + amount +

" item will cause stock ");

System.out.println("to become greater than " + MAX +

" units (overstock)");

}

else

{

stockLevel = temp;

}

} // End of method add

James Tam

Remove(): Try To Remove 21 Items From 20 Items

public void remove(int amount)

{

int temp;

temp = stockLevel - amount;

if (temp < MIN)

{

System.out.print("Removing " + amount +

" item will cause stock ");

System.out.println("to become less than " + MIN + " units

(understock)");

}

else

{

stockLevel = temp;

}

}

public String showStockLevel()

{

return("Inventory: " + stockLevel);

}

}

CPSC 233: Intro to O-O part 2
9

James Tam

Documenting Methods

• Course requirement: Methods are a ‘mini’ program so the
manner in which an entire program is documented should also
repeated in a similar process for each method:
- Features list.

- Limitations, assumptions e.g., if a function will divide two parameters
then the documentation should indicate that the method requires that
the denominator is not zero.

- (Authorship and version number may or may not be necessary for the
purposes of this class although they are often included in actual practice).

• Another common requirement:
- The number and type of parameters e.g. display(int,String)

- The return type: //returns(int)

James Tam

Good Style: Functions/Methods

1. Each function should have one well defined task. If it doesn’t
then this may be a sign that the function should be
decomposed into multiple sub-functions.
a) Clear function: A function that squares a number.
b) Ambiguous function: A function that calculates the square and the

cube of a number.
Writing a function that is too specific makes it less useful (in this case what if

we wanted to perform one operation but not the other).

• Also functions that perform multiple tasks can be harder to test.

CPSC 233: Intro to O-O part 2
10

James Tam

Good Style: Functions/Methods (2)

2. (Related to the previous point). Functions should have a self-
descriptive action-oriented name (verb/action phrase or
take the form of a question – the latter for functions that
check if something is true): the name of the function should
provide a clear indication to the reader what task is
performed by the function.

a) Good: drawShape(), toUpper()

isNum(), isUpper() # Boolean functions: ask questions

a) Bad: doIt(), go(), a()

James Tam

Good Style: Functions (3)

3. Try to avoid writing functions that are longer than one
screen in length.
a) Tracing functions that span multiple screens is more difficult.

4. The conventions for naming variables should also be applied
in the naming of functions.
a) Lower case characters only.

b) With functions that are named using multiple words capitalize the
first letter of each word except the first (so called “camel case”) -
most common approach or use the underscore (less common).
Example: toUpper()

CPSC 233: Intro to O-O part 2
11

James Tam

Example Method For Decomposing A Long
Function/Method

• Look for ‘blocks’ of code that can be moved to a separate
function (e.g. body of a branch, loop etc.)

• Move that block of code to it’s own separate function.

• Be careful of scope! (You may need to pass local variables into
the new function and return updates).

Before

def fun1():
if ():

...
else:

while():
many statements

After

def fun1():
if ():

...
else:

fun2()

def fun2():
while ():
many statements

James Tam

New Terms And Definitions

• Encapsulation/information hiding

CPSC 233: Intro to O-O part 2
12

James Tam

After This Section You Should Now Know

•How to represent a class using class diagrams (attributes,
methods and access permissions) and the relationships
between classes

•What is encapsulation/information-hiding, how is it done and
why is it important to write programs that follow this principle

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 24

