
CPSC 233: Intro to O-O part 2
1

James Tam

Introduction To Object-Oriented
Programming

Part II: You will learn the difference

between functions and methods, how to

define accessor (get) methods and

mutator (set) methods, how to overload

methods such as constructors and why

this is regarded as good style.

James Tam

Terminology: Methods Vs. Functions

• Both include defining a block of code that be invoked via the
name of the method or function (e.g., print())

• Methods a block of code that is defined within a class
definition (Java example):

public class Person
{

public Person() { ... }

public void sayAge() { ... }
}

• Every object that is an instance of this class (e.g., jim is an
instance of a Person) will be able to invoke these methods.
Person jim = new Person();
jim.sayAge();

CPSC 233: Intro to O-O part 2
2

James Tam

Terminology: Methods Vs. Functions (2)

• Functions a block of code that is defined outside or independent of a class
(Python example – it’s largely not possible to do this in Java):
Defining method sayBye()

class Person:

def sayBye(self):

print("Hosta lavista!")

Methods are called via an object

jim = Person()

jim.sayBye()

Defining function: sayBye()

def sayBye():

print("Hosta lavista!")

Functions are called without creating an object

sayBye()

James Tam

Methods Vs. Functions: Summary & Recap

Methods

•The Object-Oriented
approach to program
decomposition.

•Break the program down into
classes.

•Each class will have a number
of methods.

•Methods are invoked/called
through an instance of a class
(an object).

Functions

•The procedural (procedure =
function) approach to
program decomposition.

•Break the program down into
functions.

•Functions can be invoked or
called without creating any
objects.

CPSC 233: Intro to O-O part 2
3

James Tam

Second Example: Second Look

Calls in Driver.java

Person jim = new Person();

jim.sayAge();

Person.java

public class Person {

private int age;

public Person() {

age = in.nextInt();

}

public void sayAge() {

System.out.println("My age

is " + age);

}

}
More is needed:
•What if the attribute ‘age’ needs to
be modified later?
•How can age be accessed but not
just via a print()?

James Tam

Viewing And Modifying Attributes

1) New terms: Accessor methods: ‘get()’ method
- Used to determine the current value of an attribute
- Example:

public int getAge()
{

return(age);
}

2) New terms: Mutator methods: ‘set()’ method
- Used to change an attribute (set it to a new value)
- Example:

public void setAge(int anAge)
{

age = anAge;
}

CPSC 233: Intro to O-O part 2
4

James Tam

Version 2 Of The Second (Real) O-O Example

Name of the folder containing the complete example:
third_accesorsMutators

James Tam

Class Person

• Notable differences: the constructor is redesigned,
getAge() replaces sayAge(), setAge() method added

//First version
public class Person
{

private int age;
public Person() {

…
age = in.nextInt();

}

public void sayAge() {
System.out.println("My age

is " + age);
}

}

//New version
public class Person
{

private int age;
public Person() {

age = 0;
}
public int getAge() {

return(age);
}

public void setAge
(int anAge){
age = anAge;

}
}

CPSC 233: Intro to O-O part 2
5

James Tam

Class Driver

public class Driver

{

public static void main(String [] args)

{

Person jim = new Person();

System.out.println(jim.getAge());

jim.setAge(21);

System.out.println(jim.getAge());

}

}

James Tam

Constructors

•Constructors are used to initialize objects (set the attributes) as
they are created.

•Different versions of the constructor can be implemented with
different initializations e.g., one version sets all attributes to
default values while another version sets some attributes to
the value of parameters.

•New term: method overloading, same method name, different
parameter list.
public Person(int anAge) { public Person() {

age = anAge; age = 0;

name = "No-name"; name = "No-name";

}
}

// Calling the versions (distinguished by parameter list)
Person p1 = new Person(100); Person p2 = new Person();

CPSC 233: Intro to O-O part 2
6

James Tam

Example: Multiple Constructors

•Name of the folder containing the complete example:
fourth_constructorOverloading

James Tam

Class Person

public class Person

{

private int age;

private String name;

public Person()

{

System.out.println("Person()");

age = 0;

name = "No-name";

}

CPSC 233: Intro to O-O part 2
7

James Tam

Class Person(2)

public Person(int anAge) {

System.out.println("Person(int)");

age = anAge;

name = "No-name";

}

public Person(String aName) {

System.out.println("Person(String)");

age = 0;

name = aName;

}

public Person(int anAge, String aName) {

System.out.println("Person(int,String)");

age = anAge;

name = aName;

}

James Tam

Class Person (3)

public int getAge() {

return(age);

}

public String getName() {

return(name);

}

public void setAge(int anAge) {

age = anAge;

}

public void setName(String aName) {

name = aName;

}

}

CPSC 233: Intro to O-O part 2
8

James Tam

Class Driver

public class Driver {

public static void main(String [] args) {

Person jim1 = new Person(); // age, name default

Person jim2 = new Person(21); // age=21

Person jim3 = new Person("jim3"); // name="jim3"

Person jim4 = new Person(65,"jim4");

// age=65, name = "jim4"

System.out.println(jim1.getAge() + " " +

jim1.getName());

System.out.println(jim2.getAge() + " " +

jim2.getName());

System.out.println(jim3.getAge() + " " +

jim3.getName());

System.out.println(jim4.getAge() + " " +

jim4.getName());

}

}

James Tam

New Terminology: Method Signature

•Method signatures consist of: the type, number and order of
the parameters.

•The signature will determine the overloaded method called:
Person p1 = new Person();

Person p2 = new Person(25);

CPSC 233: Intro to O-O part 2
9

James Tam

Overloading And Good Design

•Overloading: methods that implement similar but not identical
tasks.

•Examples include class constructors but this is not the only
type of overloaded methods:

System.out.println(int)

System.out.println(double)

etc.

For more details on class System see:
- http://java.sun.com/j2se/1.5.0/docs/api/java/io/PrintStream.html

• Benefit: just call the method with required parameters.

James Tam

Method Overloading: Things To Avoid

• Distinguishing methods solely by the order of the
parameters.
m(int,char);

Vs.

m(char,int);

• Overloading methods but having an identical
implementation.

• Why are these things bad?

http://java.sun.com/j2se/1.5.0/docs/api/java/io/PrintStream.html

CPSC 233: Intro to O-O part 2
10

James Tam

Method Signatures And Program Design

• Unless there is a compelling reason do not change the
signature of your methods!

class Foo

{

void fun()

{

}

}

Before:
class Foo

{

void fun(int num)

{

}

}

After:

public static void main ()

{

Foo f = new Foo();

f.fun()

}

This change

has broken

me!

James Tam

New Terms And Definitions

• Method vs. Function

• Accessor method (“get”)

• Mutator method (“set”)

• Method overloading

• Method signature

CPSC 233: Intro to O-O part 2
11

James Tam

After This Section You Should Now Know

•What are accessor and mutator methods and how they can be
used in conjunction with encapsulation

•What is method overloading and why is this regarded as good
style

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 22

