
CPSC 233: Intro to O-O 1

James Tam

Introduction To Object-Oriented
Programming

Part I: You will learn how to define

classes, create objects, call pre-defined

methods.

James Tam

Reminder: What You Know

•There are different approaches to writing computer programs.

•They all involve decomposing your programs into parts.

•What is different between the approaches (how the
decomposition occurs)/(criteria used for breaking things
down”)

•There approach to decomposition you have been introduced
to thus far:
- Procedural

- Object-Oriented (~2 weeks for CPSC 231)

CPSC 233: Intro to O-O 2

James Tam

An Example Of The Procedural Approach
(Presentation Software)

•Break down the program by what it does (described with
actions/verbs)

Filing Editing Helping…

Creating

new

document

Opening a

document

Saving a

document

… Exiting

program

PowerPoint

James Tam

What You Will Learn

•How to break your program down into objects (New term:
“Object-Oriented programming”)

•This and related topics comprise most of the remainder of the
course

CPSC 233: Intro to O-O 3

James Tam

•Break down the program into entities (classes/objects -
described with nouns)

An Example Of The Object-Oriented Approach
(Simulation)

Zoo

Animals Buildings

Visitors

Staff

Admin

Animal

care

Lions

Tigers

Bears (oh

my!)

ETC.

James Tam

Classes/Objects

•Each class of object includes descriptive data.
- Example (animals):

•Species
•Color
•Length/height
•Weight
•Etc.

•Also each class of object has an associated set of actions
- Example (animals):

•Sleeping
•Eating
•Excreting
•Etc.

CPSC 233: Intro to O-O 4

James Tam

Example Exercise: Basic Real-World Alarm
Clock

•What descriptive data is needed?

•What are the possible set of actions?

James Tam

Additional Resources

•A good description of the terms used in this section (and terms
used in some of the later sections, last accessed 2021).
http://docs.oracle.com/javase/tutorial/java/concepts/

•A good walk through of the process of designing an object-
oriented program, finding the candidate objects e.g., how to
use the “find a noun’”approach and some of the pitfalls of this
approach , last accessed 2021).
http://archive.eiffel.com/doc/manuals/technology/oosc/finding/page.ht
ml

http://docs.oracle.com/javase/tutorial/java/concepts/
http://archive.eiffel.com/doc/manuals/technology/oosc/finding/page.html

CPSC 233: Intro to O-O 5

James Tam

Types In Computer Programs

•Programming languages typically come with a built in set of
types that are known to the translator
int num;

// 32 bit whole number (e.g. operations: +, -, *, /, %)

String s = "Hello";

// Unicode character information (e.g. operation:
concatenation)

•Unknown types of variables cannot be arbitrarily declared!
Person tam;
// What info should be tracked for a Person

// What actions is a Person capable of

// Compiler error! The identifier Person is unknown.

James Tam

A Class Must Be First Defined

•A class is a new type of variable.

•The class definition specifies:
- What descriptive data is needed?

•Programming terminology: attributes = data (New definition)

- What are the possible set of actions?
•Programming terminology: methods = actions (new definition)
•A method is the Object-Oriented equivalent of a function

CPSC 233: Intro to O-O 6

James Tam

Defining A Java Class

Format:
public class <name of class>
{

attributes
methods

}

Example (more explanations coming shortly):
public class Person

{

private int age; // Attribute

public Person() { // Method

age = in.nextInt();

}

public void sayAge() {// Method

System.out.println("My age is " + age);

}

}

James Tam

The First Object-Oriented Example

•Program design: each class definition (e.g., public class
<class name>) must occur its own “dot-java” file).

•One example program consists of two files in the same
directory:
- (From now on your programs must be laid out in a similar fashion):

-Driver.java

-Person.java

- Full example is located in the folder: first_helloOO

CPSC 233: Intro to O-O 7

James Tam

The Driver Class

public class Driver

{

public static void main(String [] args)

{

Person aPerson = new Person();

aPerson.sayHello();

}

}
// Class person
public void sayHello()
{

...
}

James Tam

Class Person

public class Person

{

public void sayHello()

{

System.out.println("I don't wanna say hello.");

}

}

CPSC 233: Intro to O-O 8

James Tam

New Concepts: Classes Vs. Objects

•Class definition:
- Specifies the characteristics of an entity but is not an instance of that

entity

- It’s much like a blue print that specifies the characteristics of a building
(height, width, length etc.) a class definition only specifies attributes and
methods but it doesn’t create any examples (instances) of that class.

www.colorbox.com

James Tam

New Concepts: Classes Vs. Objects (2)

•Object:
- A specific example or instance of a class.

- Objects have all the attributes specified in the class definition

Images: James Tam

CPSC 233: Intro to O-O 9

James Tam

main() Method

•Language requirement: There must be a main() method - or
equivalent – to determine the starting execution point.
- The main method has a very specific parameter list that must always be

included (String [] args).

•Style requirement: the name of the class that contains main()
is often referred to as the “Driver” class.
- Makes it easy to identify the starting execution point in a big program.

- An acceptable alternative name: Call it the “Start” class.

•Do not instantiate instances of the Driver1

•For now avoid:
- Defining attributes for the Driver.1

- Defining methods for the Driver (other than the main() method).1

1 Details may be provided later in this course

James Tam

Compiling Multiple Classes

•One way (safest) is to compile all code (dot-Java) files when
any code changes.

•Example of what to type at the command line (with the first O-
O example):
-javac Driver.java

-javac Person.java

- (Alternatively use the ‘wildcard’): javac *.java

CPSC 233: Intro to O-O 10

James Tam

Why Must Classes Be Defined

•Some classes are already pre-defined (included) in a
programming language with a list of attributes and methods
e.g., String

•Why don’t more classes come ‘built’ into the language?

•The needs of the program will dictate what attributes and
methods are needed.

James Tam

Defining The Attributes Of A Class In Java

•Attributes can be variable or constant (preceded by the
‘final’ keyword), for now stick to the former.

•Format:
<access modifier>1 <type of the attribute> <name of the attribute>;

•Example:
public class Person

{

private int age;

}

1) Although other options may be possible, attributes are almost always set to private (more on this
later). For now set all attributes to private.

CPSC 233: Intro to O-O 11

James Tam

New Term: Object State

•Attributes: Data that describes each instance or example of a
class.

•Different objects have the same attributes but the specific
values contained in those attributes can vary.
- Reminder: The class definition specifies the attributes and methods for all

objects. Individual objects can have different values for attributes.

•Example: two ‘monster’ objects each have a health attribute
but the current value of their health can differ.

•The current value of an object’s attribute’s determines it’s
state.

Age: 35
Weight: 192

Age: 50
Weight: 125

Age: 0.5
Weight: 7

www.colourbox.com

James Tam

Defining The Methods Of A Class In Java

Format:
<access modifier>1 <return type2> <method name> (<p1 type> <p1 name>, <p2 type>
<p2 name>…)

{

<Body of the method>

}

Example:
public class Person

{

// Method definition

public void sayAge() {

System.out.println("My age is " + age);

}

}

1) For now set the access modifier on all your methods to ‘public’ (more on this later).

2) Return types: includes all the built-in ‘simple’ types such as char, int, double…arrays
and classes that have already been defined (as part of Java or third party extras). Void is
for methods that don’t have an explicit return statement or a specific return value.

CPSC 233: Intro to O-O 12

James Tam

Defining Methods With Parameters: Different
Types

Parameter

type

Format Example

Simple types <method>(<type> <name>) method1(int x, char y) { ...
}

Objects <method>(<class> <name>) method2(Person p) { ... }

Arrays <method>(<type> []… <name>) method3(Map [][] m) { ... }

• When calling a method: Only the names of the parameters must be

passed e.g., System.out.println(num,age);
• Multiple parameters are separated with a comma.

James Tam

Defining Methods, Specifying Return Values:
Different Types

Return type Example

Simple types int method1() { return(0); }

Objects Person method2() {
Person p = new Person();
return(p);

}

Arrays Person [] method3() {
Person [] p = new
Person[3];

return(p);
}

Nothing Person void method4() {
...
if (age < 0) {

return;
}
else { //Process the age variable.
}

}

CPSC 233: Intro to O-O 13

James Tam

What Are Methods

•Possible behaviors or actions that apply to each instance
(example) of a class.

Walk()
Talk()

Walk()
Talk()

Fly()

Swim()

James Tam

Instantiation

•New definition: Instantiation, creating a new instance or
example of a class.

•Instances of a class are referred to as objects.

•Format:
<class name> <instance name> = new <class name>(<parameters>);

•Examples:
Person jim = new Person();

Scanner in = new Scanner(System.in);

Creates new object

Reference variable
names: ‘jim’, ‘in’

CPSC 233: Intro to O-O 14

James Tam

•New term: A special method used to initialize the attributes of an object as
the objects are instantiated (created).

•The constructor is automatically invoked whenever an instance of the class
is created e.g., Person aPerson = new Person();

•Constructors can take parameters but never have a return
type.

Constructor

Constructor

Call to constructor
(creates something
‘new’)

Object

x

y

z

Object

x = 1

y = 2

z = 3

class Person {
// Constructor
public Person() {

…
}

}

James Tam

New Term: Default Constructor

•Takes no parameters

•If no constructors are defined for a class then a default
constructor comes ‘built-into’ the Java language for every class
that you define.

•e.g.,
public class Driver {

main() {

Person aPerson = new Person();

}

}

public class Person {

private int age;

}

CPSC 233: Intro to O-O 15

James Tam

Calling Methods (Outside The Class)

• You’ve already done this before with pre-created classes!

• First create an object (illustrated in previous screens)

• Then call the method for a particular variable.

• Format:
<instance name>.<method name>(<p1 name>, <p2 name>…);

• Examples:
Person jim = new Person();

jim.sayName();

// Previously covered example, calling Scanner class method
Scanner in = new Scanner(System.in);
System.out.print("Enter your age: ");
age = in.nextInt();

Scanner

variable
Calling

method

James Tam

Calling Methods: Inside The Class

•You have seen this implicitly in the examples but here are the
explicit syntax requirements you need to know well.

•Calling a method inside the body of the class (where the
method has been defined)
- You can just directly refer to the method (or attribute)
public class Person {

private int age;

public void birthday() {

becomeOlder(); // access a method

}

public void becomeOlder() {

age++; // access an attribute

}

CPSC 233: Intro to O-O 16

James Tam

Calling Methods: Outside The Class

•Calling a method outside the body of the class (i.e., in another
class definition).

•The method must be prefaced by a variable (actually a
reference to an object – more on this later).
public class Driver {

public static void main(String [] args) {

Person bart = new Person();

Person lisa = new Person();

// Incorrect! Who ages?

becomeOlder();

// Correct. Happy birthday Bart!

bart.becomeOlder();

}

}

James Tam

Second Object-Oriented Example

•Learning concepts:
- Attributes

- Constructors

- Accessing class attributes in a class method

•Full example is located in the folder:
second_attributeConstructor

CPSC 233: Intro to O-O 17

James Tam

Class Driver

public class Driver

{

public static void main(String [] args)

{

Person jim = new Person();

jim.sayAge();

}

}

public Person() {
Scanner in = new

Scanner(System.in);
System.out.print("Enter age: ");
age = in.nextInt();

}

public void sayAge() {
System.out.println

("My age is " + age);
}

James Tam

Class Person

public class Person

{

private int age;

public Person()

{

Scanner in = new Scanner(System.in);

System.out.print("Enter age: ");

age = in.nextInt();

}

public void sayAge()

{

System.out.println("My age is " + age);

}

}

CPSC 233: Intro to O-O 18

James Tam

Creating An Object

•Two stages (can be combined but don’t forget either step)
- Create a variable that refers to an object e.g., Person jim;

- Create a *new* object e.g., jim = new Person();
•The keyword ‘new’ calls the constructor to create a new object in memory

- Observe the following
Person jim;

jim = new Person(12);

jim = new Person(22);

jim null

Jim is a reference to a Person
object

age =22

age =12

James Tam

New Terms And Definitions

•Object-Oriented programming

•Class

•Object

•Class attributes

•Class methods

•Object state

•Instantiation

•Constructor (and the Default constructor)

CPSC 233: Intro to O-O 19

James Tam

After This Section You Should Now Know

•How to define classes, instantiate objects and access different
part of an object (attributes, methods).

•What is a constructor and how is it defined and used.

James Tam

Copyright Notification

•“Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 38

