
CPSC 233: Java introduction 1

James Tam

Introduction To Java Programming

You will learn the basics of creating a

Java program: writing/translating a

program, writing documentation,

declaring variables, constants, getting

input, displaying output.

James Tam

Java: Write Once, Run Anywhere

•Consequence of Java’s history
(coming later): platform-
independence

Mac user running Safari

Windows user running Edge

Web page stored on Unix server

Click on link to Applet

Byte code is downloaded

Virtual machine translates byte code to

native Mac code and the Applet is run

Byte code

(part of web

page)

CPSC 233: Java introduction 2

James Tam

Java: Write Once, Run Anywhere

•Consequence of Java’s history
(coming later): platform-
independence

Mac user running Safari

Windows user running Edge

Web page stored on Unix server

Click on link to Applet

Virtual machine translates byte code to

native Windows code and the Applet is run

Byte code is downloaded

Byte code

(part of web

page)

James Tam

Java: Write Once, Run Anywhere (2)

• But Java can also create standard (non-web based) programs

Dungeon Master (Java version)

Accessed Jan. 2021
Dungeon Master Java Download (2001 Role playing Game) (old-games.com)

Some examples of mobile Java games: http://www.mobilegamesarena.net

Kung Fu Panda:

Accessed 2013

screen grab from www.kunfupanda.com

https://www.old-games.com/download/3939/dungeon-master-java
http://www.kunfupanda.com/

CPSC 233: Java introduction 3

James Tam

Java: Write Once, Run Anywhere (3)

• Java has been used by large and reputable companies to
create serious stand-alone applications.

• Example:
- Eclipse1: started as a programming environment created by IBM for

developing Java programs. The program Eclipse was itself written in Java.

1 For more information (last accessed 2015): http://www.eclipse.org/downloads/

James Tam

JT’s Note: IDEs

• There are many graphical development environments
available for Java (e.g., Eclipse).

• Learning one or more these environments prior to embarking
on employment would be a valuable experience.

• However it is not recommended that you use them for this
course.
- You may have drastic problems configuring the environment (e.g., if you

have to use example starting code).

- It’s easier programming without an IDE and then learning one later than
the opposite (not all development teams can/will use them).

- With the size of the programs you will see in this class it would be a good
learning experience to ‘work without a net’.

•Because you have to do it all yourself you will likely learn things better.

http://www.eclipse.org/downloads/

CPSC 233: Java introduction 4

James Tam

IDEs: Bottom Line

• Assignments must be submitted in the form of .java text
files that will compile and run on the computer science
network.

• If you have problems with the IDE or getting your programs to
work on our network then you will likely be on your own.

Remote learning version:

program needs to work in the

latest version of Java when

run compiled and run through

a command line

James Tam

Official Online Java Documentation

• “Getting started” tutorials (last accessed 2021):
- http://docs.oracle.com/javase/tutorial/

CPSC 233: Java introduction 5

James Tam

Which Java?

• Download link:
- https://www.oracle.com/java/technologies/javase-downloads.html

• Java JDK (Java Development Kit), Standard Edition includes:
- JDK (Java development kit) – for developing Java software (creating Java

programs).

- JRE (Java Runtime environment) –for running pre-created Java programs.
•Java Plug-in – a special version of the JRE designed to run through web browsers.

• For consistency/fairness: Your graded work will be based on
the version of Java installed on the CPSC network
- Only run your program using a remote connection program (e.g., SSH to a CPSC

Linux computer) or test your code periodically on the network to make sure it’s
compatible.

- It’s your responsibility to ensure compatibility.

- If the program doesn’t work on the Lunix computers in the lab then it will only
receive partial marks (at most).

Remote learning version:

program needs to work in the

latest version of Java when

run compiled and run through

a command line

James Tam

Getting Java Setup

• Unlike installing python the java install leaves out one small
but critical step:
- (Python):

- (The ‘path’ specifies to your operating system the location or ‘path’ to
where the translation program ‘python’ or ‘javac/java’ resides on your
computer).

- JT’s editorial opinion: since Java is also used as a language for beginners
this was a real dumb omission. (Don’t blame JT!)

•The benefits of leaving out the option provided with Python don’t outweigh the
costs.

https://www.oracle.com/java/technologies/javase-downloads.html

CPSC 233: Java introduction 6

James Tam

Setting The Path For Java

• Windows help document (Step II specifies how to set the
path):
https://www.oracle.com/webfolder/technetwork/tutorials/Or
acleCode/Windows-HOL-setup.pdf

• Help link for other operating systems (MAC-OS, UNIX):
- https://www.oracle.com/java/technologies/installation-solaris2-009.html

• Web search terms if you don’t like these tutorials: ‘set’ or
‘setting’, ‘java’, ‘classpath’

James Tam

Alternative: Simple But A Hack

• Create your Java programs in the same location as the Java
compiler (you should remember where you installed it).

https://www.oracle.com/webfolder/technetwork/tutorials/OracleCode/Windows-HOL-setup.pdf
https://www.oracle.com/java/technologies/installation-solaris2-009.html

CPSC 233: Java introduction 7

James Tam

Compilation

• Translating from a high level programming language such as
Java or C++ to low level machine language (binary).

• Python:
- One stage translation process: from Python to machine occurs each time

the program runs.

- The translated instructions remain in memory.

• Java
- Two stage process:

1. A one time translation occurs from Java to a generic binary that is common
to many computers and many electronic devices (this creates a ‘byte code’
file)

2. Each time the program is run the generic binary is translated to machine
language which is specific to the computer or device.

James Tam

Compiled Programs With Different
Operating Systems: Multiple Compilers

Needed

Windows
compiler

Executable (Windows)

UNIX
compiler

Executable (UNIX)

Mac OS
compiler

Executable (Mac)

Computer
program

CPSC 233: Java introduction 8

James Tam

A High Level View Of Translating/Executing
Java Programs

Java compiler

“javac”

Java program

Filename.java

Java byte
code
(generic
binary)

Filename.class

Stage 1: Compilation

James Tam

A High Level View Of Translating/Executing
Java Programs (2)

Java interpreter

“java”
Java byte
code
(generic
binary)

Filename.class

Machine language

instruction (UNIX)

Machine language

instruction (Windows)

Machine language

instruction (Apple)

Stage 2: Final translation and execution of the

byte code

CPSC 233: Java introduction 9

James Tam

Java Syntax Requirements To Compile A Program

• Type the following into a text file called “Smallest.java”:

public class Smallest
{

public static void main(String[] args)
{

System.out.println("Small program running");
}

}

James Tam

Compiling And Running A Java Program (Windows)

• These steps assume that you already have Java installed on
your computer and the path has already been properly set!

1. Type in your program using a text editor (e.g. Notepad, WordPad,
Notepad++).
a) Save the program as a ‘text’ file (for now try it with the program called
Smallest.java. Make sure the program ends in the suffix .java and
NOT anything else e.g. .txt.

b) For now save the program under C:\users\<Your Windows user name>

2. Open a command line (‘cmd’ in Windows or ‘terminal’ with a
computer running OS X).

3. If the command line shows the location as C:\users\<Your
Windows user name> then type the following. If the command line
opens elsewhere then move your Java program to this location.
a) Compile the program by typing the following at the command line: javac
Smallest.java

b) If your program has no error messages specifying syntax problems then the
command line it will then allow you to enter new input. Run the interpreter
(and run the program) by typing: java Smallest

CPSC 233: Java introduction 10

James Tam

Step 1: Example Of Saving (Notepad)

“Save As” allows

the file suffix to

be changed from

the ‘.txt’ default

Select “All Files”

and then you can

add the suffix

‘.java’ to the file

name.

James Tam

Step 1: Example Of Saving (WordPad)

Select “Save As”

from the menu and

then the file type as

“Text document” but

change the suffix
from ‘txt’ to ‘java’

CPSC 233: Java introduction 11

James Tam

Step 1: Example Of Saving (Notepad++)

• “Save as” type: Java source file.

James Tam

Step 2: Starting A Command Line (Windows Cmd)

• Click on the Start button and type ‘cmd’

• Click on the ‘Open’ option for the Command Prompt (you may
need to click on “Run as Administrator” if you are not
currently running an administrator account).

CPSC 233: Java introduction 12

James Tam

Step 3A: Compile The Program

• What’s needed: The location opened by the prompt matches
the recommended location for this example (for me its
C:\Users\James Tam).

• Compile the program (translate to machine/binary) by typing
the following at the command line and then hit enter: javac
Smallest.java

• In this case there were no syntax errors and after compilation
the command prompt returns.

James Tam

Step 3B: Run The Program

• Run the Java interpreter (which runs your program) by typing
the following at the command line and hitting enter: java
Smallest

Result of executing

the program

public class Smallest
{

public static void main(String[] args)
{

System.out.println("Small program running");
}

}

CPSC 233: Java introduction 13

James Tam

General Rule: Creating/Running Programs

• Very important Java requirement: the name after the word
class must match the name of the file AND it is what you type
in when compile (ending in.java) and run your program (no
suffix).

public class Biggest
{

public static void main(String[] args)
{

System.out.println("Big program");
}

}

James Tam

Documentation / Comments

Multi-line documentation
/* Start of documentation

*/ End of documentation

- Don’t nest this form of documentation (results in a syntax error)

Documentation for a single line
//Everything until the end of the line is a comment

CPSC 233: Java introduction 14

James Tam

Review: What Should You Document

• Program author

• What does the program as a while do e.g., tax program.

• What are the specific features of the program e.g., it
calculates personal or small business tax.

• What are its limitations e.g., it only follows Canadian tax laws
and cannot be used in the US. In Canada it doesn’t calculate
taxes for organizations with yearly gross earnings over $1
billion.

• What is the version of the program
- If you don’t use numbers for the different versions of your program then

consider using dates

- Tie versions with program features: for each version list the features
completed.

James Tam

Important Note

• Each Java instruction must be followed by a semi-colon!

General format

Instruction1;

Instruction2;

Instruction3;

: :

Examples

int num = 0;

System.out.println(num);

: :

CPSC 233: Java introduction 15

James Tam

Java Output: Common Methods (~Function)

• Print only the output specified (no other formatting: spaces,
tabs, newlines)

(Java)
System.out.print();

(Python)
print(…, end="")

• Print the output specified followed by a newline.

(Java)
System.out.println();

(Python)
print()

James Tam

Java Output: Specifics

•Format:
System.out.print(<string or variable name one> + <string or variable

name two>..);

OR

System.out.println(<string or variable name one> + <string or

variable name two>..);

•Complete online example: OutputExample.java
public class OutputExample

{

public static void main(String [] args)

{

int num = 123; // Details coming
System.out.println("Good-night gracie!");
System.out.print(num);
System.out.println("num="+num);

}

}

CPSC 233: Java introduction 16

James Tam

Output : Some Escape Sequences For
Formatting

• The escape sequence is placed between the quotes in print()
or println() e.g., System.out.print("hi\tthere");

Escape sequence Description

\t Horizontal tab

\n New line

\" Double quote

\\ Backslash

James Tam

Variables

• Unlike Python variables must be declared before they can be
used.

• Variable declaration:
- Creates a variable in memory.

- Specify the name of the variable as well as the type of information that it
will store.

- E.g. int num;

- Although requiring variables to be explicitly declared appears to be an
unnecessary chore it can actually be useful for minimizing insidious logic
errors (example to follow shortly).

• Using variables
- Only after a variable has been declared can it be used (e.g., assignment)

- E.g., num = 12;

CPSC 233: Java introduction 17

James Tam

Using Variables: A Contrast

Python

•Variables do not need to be
declared before being used.

•Easy to start programming.

•Easy to make logic errors!

incomeTam = 25000

if (winLottery):

incomeTan = 1000000

•Syntax rule: variables must always
be declared prior to use.

•A little more work to get started.

•Some logic errors may be
prevented.

int incomeTam = 25000;

if (winLottery)

incomeSmith = 1000000;

Java

BAD, Logic error: can

be tricky to catch in a

real (large and

complex) program

BETTER, Syntax error:

compiler points out the

source of the problem

James Tam

Declaring Variables: Syntax

• Format:
<type of information> <name of variable>;

• Example:
char firstInitial;

• Variables should be initialized (set to a starting value) as
they’re declared:
char firstInitial = 'j';

String firstName = "James";

int age = 30;

Note: In Java Strings MUST be enclosed in double quotes. Single

quotes are used for characters (which are not the same as a Java

String).

CPSC 233: Java introduction 18

James Tam

Some Built-In Types Of Variables In Java

Type Description

byte 8 bit integer

short 16 bit integer

int 32 bit integer

long 64 bit integer

float 32 bit real number (rare)

double 64 bit real number (default for many operations)

char 16 bit Unicode character (stores ASCII values

and values beyond). Use single quotes.

boolean True or false value

String A sequence of characters between double

quotes ("")

James Tam

Location Of Variable Declarations

public class <name of class>

{

public static void main(String[] args)

{

// Local variable declarations occur here

//Program statements

...

}

}

CPSC 233: Java introduction 19

James Tam

Java Strings

• Similar to Python strings: a sequence of characters indexed
from zero to (length – 1)
- Don’t try to directly access elements via the index e.g., string1[0];

- Elements can be accessed via a method charAt(int)

• Unlike Python strings Java Strings only use double quotes

• (In Java single quotes encloses a single character)

• Format (creating string variable):
String <string name> = "<value>";

• Example (creating string variable):
String username = "tamj";

James Tam

Common String Methods

• Examples useful methods:

Method Description

string.charAt(int) Retrieves character at the specified index

string.compareTo(String
s)

Compares string with parameter:
• Zero returned if string and parameter equal

• Less than zero if the string comes before the

parameter

• Greater than zero if the string comes after

parameter

string.compareToIgnoreC
ase (String s)

As compareTo() but case insensitive

string.length() Returns the length of the string

string.toLowerCase() Converts alphabetic characters to lower case

string.toUpperCase() Converts alphabetic characters to capitals

For more info look under “class String”

http://docs.oracle.com/javase/8/docs/api/

http://docs.oracle.com/javase/8/docs/api/

CPSC 233: Java introduction 20

James Tam

A String Example

• Name of the complete online example: StringEg.java

String myString = "ab*cde";

System.out.println(myString.charAt(0) +

" " + myString.charAt(2));

System.out.println(myString.length());

System.out.println("-");

myString = myString.toUpperCase();

System.out.println(myString);

myString = myString.toLowerCase();

System.out.println(myString);

System.out.println("-");

James Tam

A String Example (2)

// recall myString = "ab*cde"

System.out.println

(myString.compareToIgnoreCase("ab*cde"));

System.out.println

(myString.compareToIgnoreCase("zzz"));

System.out.println

(myString.compareToIgnoreCase("ab"));

ab*cde(zzz)

ab*cde(ab)

CPSC 233: Java introduction 21

James Tam

Style Hint: Initializing Variables

• Always initialize your variables prior to using them!
- Do this whether it is or is not required by the syntax of the language.

• Example: A how not to approach (with some languages you’ll
get a logic and not a syntax error as you do with Java).

• Name of the complete online example:
OutputExample.java

public class OutputExample1

{

public static void main(String [] args)

{

int num;

System.out.print(num);

}

}
OutputExample1.java:7: error: variable

num might not have been initialized

System.out.print(num);
^

James Tam

Formatting Output: Elective Topic

• It’s somewhat similar to Python.

• The field width and places of precision (float point) can be
specified.

• Format (‘System.out.’ requirement excluded for brevity):
printf("%<field width>d", price); // Integer

printf("%<field width>s", price); // String

printf("%<field width>.<precision>f", price); // Floating point

• If field width greater than the size of the data:
- A positive field width will result in leading spaces (right justify).

- A negative field width will result in trailing spaces (left justify).

CPSC 233: Java introduction 22

James Tam

Formatting Output (2): Elective Topic

• Name of the complete online example:
FormattingExample.java

public class FormattingExample

{

public static void main(String [] args)

{

String str = "123";

int num = 123;

double price = 1.999;

System.out.printf("%-4s", str);

System.out.printf("%5d", num);

System.out.printf("%6.2f", price);

}

}

James Tam

Java Constants (“Final”)

• Reminder: constants are like variables in that they have a
name and store a certain type of information but unlike
variables they CANNOT change. (Unlike Python this is
syntactically enforced…that’s a good thing!).

• The syntactically enforced unchanging nature of constants is
specified with the ‘final’ key word.

• Stylistic reminder: constants must be capitalized.

Format:
final <constant type> <CONSTANT NAME> = <value>;

Example:
final int SIZE = 100;
SIZE = 1000; // Syntax error

CPSC 233: Java introduction 23

James Tam

Location Of Constant Declarations

public class <name of class>

{

public static void main(String[] args)

{

// Local constant declarations occur here (for now)

// Local variable declarations

< Program statements >>

: :

}

}

James Tam

Variable Naming Conventions In Java

• Compiler requirements
- Can’t be a keyword nor can the names of the special constants: true,

false or null be used.

- Can be any combination of letters, numbers, underscore or dollar sign
(first character must be a letter or underscore)

• Common stylistic conventions
- The name should describe the purpose of the variable

- Avoid using the dollar sign

- With single word variable names, all characters are lower case
•e.g., double grades;

- Multiple words are separated by capitalizing the first letter of each
word except for the first word

•e.g., String firstName = "James";

-To avoid confusion don’t use method names
•E.g. String println;

CPSC 233: Java introduction 24

James Tam

Some Java Keywords (Avoid Using As Identifiers)

abstract boolean break byte case catch char

class const continue default do double else

extends final finally float for goto if

implements import instanceof int interface long native

new package private protected public return short

static super switch synchronized this throw throws

transient try void volatile while

James Tam

Common Operators

Operation Operator Example usage

Assignment = num = 123;

Addition + num = 2 + 2;

Subtraction - num = 5 – 2;

Multiplication * num = num * 2;

Division / num = 9 / 3;

Remainder % num = 9 % 2

Negation - -num;

CPSC 233: Java introduction 25

James Tam

Post/Pre Operators

• Post/Pre Increment

• A common shorthand notation used in several languages (e.g.,
Java, C, C++) which will increase a variable by one.

• Post-increment
num++;

• Pre-increment
++num;

• Pre vs. post operators will produce identical results if the
increment is the only operation (two previous examples):

• The specific difference between ‘post’ vs. ‘pre’ will be coming
up shortly

James Tam

Post/Pre Decrement

• Operates in a similar fashion to post/pre decrement except
that a variable is decreased by one.

• Post decrement
num--;

• Pre decrement
--num;

CPSC 233: Java introduction 26

James Tam

Post/Pre Operators

Name of the complete online example: Order.java

public class Order

{

public static void main(String [] args)

{

int num = 5;

System.out.println(num);

num++;

System.out.println(num);

++num;

System.out.println(num);

System.out.println(++num);

System.out.println(num++);

}

}

James Tam

Casting: Converting Between Types

• Casting: the ability to convert between types.
- Of course the conversion between types must be logical otherwise an

error will result e.g., multiplication on a String is a nonsensical operation

• In Java unlike Python the conversion isn’t just limited to a
limited number of functions.
- Consequently Python doesn’t have true ‘casting’ ability.

• Format:
<Variable name> = (type to convert to) <Variable name>;

CPSC 233: Java introduction 27

James Tam

Casting: Structure And Examples

Name of the complete online example: Casting.java

public class Casting {

public static void main(String [] args) {

int num1;

double num2;

num2 = 1.9;

// Cast needed to explicitly convert (going from more to less)

num1 = (int) num2;

System.out.println(num1 + " " + num2);

// Cast not needed: going from less to more

num2 = num1;

System.out.println(num1 + " " + num2);

}

}

Converting/casting types:
• Simple but important

concept

• Going from ‘more’ to ‘less’

and ‘less’ to ‘more’: we’ll

return back to this in the

‘hierarchies’ section

(inheritance)

James Tam

Accessing Pre-Created Java Libraries

• It’s accomplished by placing an ‘import’ of the appropriate
library at the top of your program.

• Syntax:
import <Full library name>;

• Example:
import java.util.Scanner;

CPSC 233: Java introduction 28

James Tam

Getting Text Input

• You can use the pre-written methods (functions) in the
Scanner class.

• General structure:

import java.util.Scanner;

main(String [] args)
{

Scanner <name of scanner> = new Scanner(System.in);
<variable> = <name of scanner>.<method>();

}

Creating

scanner entity

(object)

Getting

user input

with a

method

James Tam

Getting Text Input (2)

Name of the complete online example: MyInput1.java

import java.util.Scanner;

public class MyInput1
{

public static void main(String [] args)
{

String name;
int age;
Scanner in = new Scanner(System.in);
System.out.print("Enter your age: ");
age = in.nextInt();
in.nextLine();
System.out.print("Enter your name: ");
name = in.nextLine();
System.out.println("Age: " +age +"\t Name:" + name);

}
}

CPSC 233: Java introduction 29

James Tam

Useful Methods Of Class Scanner1

• nextInt()

• nextLong()

• nextFloat()

• nextDouble()

• nextLine()

1 Online documentation: http://docs.oracle.com/javase/8/docs/api/

James Tam

Reading A Single Character

• Text menu driven programs may require this capability.

• Example:
GAME OPTIONS

(a)dd a new player

(l)oad a saved game

(s)ave game

(q)uit game

• There’s different ways of handling this problem but one
approach is to extract the first character from the string.

• Partial example:
String s = "boo";

System.out.println(s.charAt(0));

CPSC 233: Java introduction 30

James Tam

Getting Input: A Common Issue

• Many methods or functions that get non-String input (e.g.
numeric) will leave the “End of Line” <EOL> character in the
input buffer. (Not Java specific).
- Example when you type in a number you must signal the end of the input

by hitting enter.

- The enter character signifies that the entry of input has occurred (“end of
the line” has been reached) and is a valid String.

• This can be a problem if there’s a need to get String input
immediately afterward.
- Example: get the user to enter a number and then a String.

• Solution:
- After getting non-String input call a function or method immediately

afterward that gets String input to remove the EOL from the buffer.

- Then call the function/method a second time to prompt for the String.

James Tam

Getting Input: Example Solution

• Name of the complete online example: MyInput2.java

public class MyInput2
{

public static void main(String [] args)
{

String name;
int age;
Scanner in = new Scanner(System.in);
System.out.print("Enter your age: ");
age = in.nextInt();
in.nextLine(); //Solution
System.out.print("Enter your name: ");
name = in.nextLine();
System.out.println("Hi " + name + " you're "
+ age);

}
}

CPSC 233: Java introduction 31

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 61

