Code Reuse Through
Hierarchies

Part 3: you will learn how interfaces
provide a design guide while abstract
classes can specify design (abstract
methods) but also an common
implementation (non-abstract methods)

public interface BankAccount

Java Interfaces ¢ public final static int MIN_BALANCE = ©;

public void displayBalance();
public void deposit(double amount);
public void withdraw(double amount);

eSimilar to a class ’

eProvides a design guide rather than implementation details

eSpecifies what methods should be implemented but not how
(i.e. method signature but not method body)
- (Specify the signature of methods so each part of the project can proceed
with minimal coupling between classes).
- An important design tool: Agreement for the interfaces should occur very
early before program code has been written.
- Changing the method body rather than the method signature won't
‘break’ code.

elt’s a design tool so interfaces cannot be instantiated
-Q: What if one could instantiate an interface directly?

*Name of the folder containing the complete online example:
8hierarchiesInterfaces

Object-Oriented hierarchies, code reuse

Note the file defining a
Java interface must
end in dot-java e.g.
BankAccount.java

Interfaces: Format

Format for defining an interface

public interface <name of interface>

{
constants
methods to be implemented by the class that realizes
(provides a body) this interface
}

Example for defining an interface

public interface BankAccount

{
public final static int MIN_BALANCE = ©;

public void displayBalance();

James Tam

Classes That Implement/Realize An Interface

Format for realizing / implementing the interface

public class <name of class> implements <name of interface>

{

attributes
methods actually implemented by this class

}
Format for realizing / implementing the interface
public class SavingsAccount

{
private double balance;
public void displayBalance()
{
System.out.println(balance);
}
}

James Tam

Object-Oriented hierarchies, code reuse

Interfaces: A Checkers Example

v | e |
@

Regular rules?

Regular board?

Yes
Yes Yes

Variant rules2

1 From www.allaboutfungames.com) 2 Board images from “Tam” James Tam

Interface Board

public interface Board
{
public static final int SIZE = 8;
public void displayBoard();
public void initializeBoard();
public void movePiece();
boolean moveValid(int xSource,
int ySource,
int xDestination,
int yDestination);

James Tam

Object-Oriented hierarchies, code reuse

http://allaboutfunandgames.com/wp-content/uploads/2011/11/Checkers.jpg
http://allaboutfunandgames.com/wp-content/uploads/2011/11/Checkers.jpg

Class RegularBoard

public class RegularBoard implements Board

{
public void displayBoard()
{

}

public void initializeBoard()

{
}

James Tam

Class RegularBoard (2)

public void movePiece() {
//Get (x, y) coordinates for the source and destination
if (moveValid(xS, yS, xD, yD) == true)
//Actually move the piece
else
//Don’t move piece and display error message

public boolean moveValid(int xSource, int ySource,
int xDestination,
int yDestination)

{
if (moving forward diagonally)
return(true); e
else --
return(false); Yes msl
}

} // End of class RegularBoard

James Tam

Object-Oriented hierarchies, code reuse

Class VariantBoard

public class VariantBoard implements Board

{
public void displayBoard ()

{

public void initializeBoard ()

{
}

James Tam

Class VariantBoard (2)

public void movePiece() {
//Get (x, y) coordinates for the source and destination
if (moveValid (xS, yS, xD, yD) == true)
// Actually move the piece
else
//Don’t move piece and display error message

public boolean moveValid(int xSource, int ySource,
int xDestination,
int yDestination)

if (moving straight-forward or straight side-ways)
return(true);
else
return(false);
}
} //End of class VariantBoard ___I

L.
h_d

James Tam

Object-Oriented hierarchies, code reuse

Interfaces: Recapping The Example

e|nterface Board
- No state (variable data) or behavior (body of the method is empty)
- Specifies the behaviors that a board should exhibit e.g., clear screen

- This is done by listing the methods that must be implemented by classes
that implement the interface.

*Class RegularBoard and VariantBoard
- Can have state and methods

-They must implement all the methods specified by the interface ‘Board’
(but can also implement other methods too)

Specifying Interfaces In UML

<< interface >>

Interface name

method specification

I Realization / Implements

Class name
method implementation

Object-Oriented hierarchies, code reuse

Alternate UML Representation (Lollipop
Notation)

Interface
name

Class name

method implementation

Implementing Multiple Interfaces

¢ Java allows for this.

Interfacel Interface2 Interface3
- , -
~ | P
~N
~ . -
sL ~
Class

Object-Oriented hierarchies, code reuse

Implementing Multiple Interfaces

Format:
public class <class name> implements <interface name 1>,
<interface name 2>, <interface name 3>..

Multiple Implementations Vs. Multiple
Inheritance

A class can implement multiple interfaces
eClasses in Java cannot extend more than one class

eAgain: multiple inheritance is not possible in Java but is
possible in other languages such as C++:
- Multiple inheritance (mock up code)

class <class name 1> extends <class
name 2>, <class name 3>..

{

Object-Oriented hierarchies, code reuse

Multiple Implementations Vs.

Multiple Inheritance (2)

eMultiple inheritance: conceptual view representing using UML

Parent class 1

Parent class 2

Parent class 3

Child class

Abstract Classes (Java)

(no body).

eFormat:

{
}

eClasses that cannot be instantiated.

eUsed when the parent class:
-specifies a default implementation of some methods,

-but cannot define a complete default implementation of other methods
(implementation must be specified by the child class).

public abstract class <class name>

*A hybrid between regular classes and interfaces. Some
methods may be implemented while others are only specified

<public/private/protected> abstract method ();

Object-Oriented hierarchies, code reuse

Abstract Classes (Java): 2

eExamplel:
public abstract class BankAccount

{

protected float balance;
public void displayBalance()

{
System.out.println("Balance $" + balance);
}
public abstract void deductFees();
}
1) From “Big Java” by C. Horstmann pp. 449 — 500. James Tam

Another Example For Using An Abstract Class

RegularBoard

<< interface >> CheckerBoard +moveValid()
Board {abstract}
+SIZE:int +displayBoard()

+displayBoard() (}— — — JinitializeBoard() |<I——

+initializeBoard() +movePiece()

+movePiece()

+moveValid() -
+moveValid() VariantBoard

+moveValid()

James Tam

Object-Oriented hierarchies, code reuse

You Should Now Know

*What are interfaces/types
- How do types differ from classes
- How to implement and use interfaces in Java
- When interfaces should be employed

*\What are abstract classes in Java and how do they differ from
non-abstract classes and interfaces.
- When to employ abstract classes vs. interfaces vs. ‘regular’ classes

eHow to read/write UML notations for abstract classes and
interfaces.

*\What does multiple inheritance from multiple implementations

Copyright Notification

* “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

Object-Oriented hierarchies, code reuse

11

