
Object-Oriented hierarchies, code reuse 1

James Tam

Code Reuse Through
Hierarchies

Part 2: Within an inheritance hierarchy you
will learn: the effect type and type
conversion, how to declare the type for a
container of parent and child classes and
how class Object is the parent of all Java
classes.

James Tam

Review: Casting

•The casting operator can be used to convert between types.

•Format:
<Variable name> = (type to convert to) <Variable name>;

•Example (casting needed: going from more to less)
double full_amount = 1.9;
int dollars = (int) full_amount;

•Example (casting not needed: going from less to more)
int dollars = 2;
double full_amount = dollars;

Object-Oriented hierarchies, code reuse 2

James Tam

Real Life Examples: Expectations Vs. Reality

You are
owed
$100

You
receive
$1000

You are
owed
$100

You
receive
$10

Getting more than

expected: acceptable

Getting less than

expected: not

acceptable

James Tam

Real Life Examples: Expectations Vs. Reality (2)

$100

Misrepresenting reality:

still not acceptable in

the end

You are
owed
$100

Cash $10

Object-Oriented hierarchies, code reuse 3

James Tam

Example Inheritance Hierarchy

FedStarShip

+attack()

+regenerate()

KlingStarShip

+attack()

+utterBattleCry()

StarShip

+attack()

James Tam

Casting And Inheritance (Up)

•Because the child class IS-A parent class you can substitute
instances of a subclass for instances of a superclass.

You can substitute a

FedStarShip for a

StarShip

You can substitute a

KlingStarShip for

a StarShip

√

FedStarShip

+attack()

+regenerate()

KlingStarShip

+attack()

+utterBattleCry()

StarShip

+attack()

Object-Oriented hierarchies, code reuse 4

James Tam

Casting And Inheritance (Down)

•You cannot substitute instances of a superclass for instances of
a subclass
- Why?

You cannot substitute a

StarShip for a FedStarShip
or a KlingStarShip

FedStarShip

+attack()

+regenerate()

KlingStarShip

+attack()

+utterBattleCry()

StarShip

+attack()

x

James Tam

Reminder: Operations Depends On Type

•Sometimes the same symbol performs different operations
depending upon the type of the operands/inputs.

•Example:
int num1 = 2;

int num2 = 3;

num1 = num1 + num2;

Vs.
String aString = "foo" + "bar";

•Some operations won’t work on some types

•Example:
String aString = 2 / 3;

Object-Oriented hierarchies, code reuse 5

James Tam

Reminder: Behavior Depends Upon Class Type

•The methods that can be invoked by an object depend on the
class definition

•Example:
class X class Y

{ {

method1() { method2() {

} }

} }

X x1 = new X();

x1.method1(); //Yes

Y y1= new Y();

y1.method1(); //No

James Tam

Casting And Inheritance

StarShip regular = new StarShip();

KlingStarShip kling = new KlingStarShip();

regular.utterBattleCry(); //Won’t compile: no such method.

regular = kling;

//Won’t compile: I think I point to the wrong type

regular.utterBattleCry();

//Works - this time but a dangerous cast

((KlingStarShip) regular).utterBattleCry();

regular = new StarShip();

kling = (KlingStarShip) regular; //Dangerous cast crashes it.

kling.utterBattleCry(); //Inappropriate action for type

x

x

x

Object-Oriented hierarchies, code reuse 6

James Tam

Caution About Class Casting: Check First!

• When casting between classes only use the casting operator
if you are sure of the type!

• Check if an object is of a particular type is via the
instanceof operator

• (When used in an expression the instanceof operator
returns a boolean result)

• Format:

if (<reference name> instanceof <class name>)

• Example:

if (supPerson instanceof Person)

James Tam

Instanceof Example

• Name of the folder containing the full online example:
6typeCheck

Person

+doDailyTasks()

Hero

+doHeroStuff()

Dog

+bark()
Type ‘Person’

Type ‘Person’

Type ‘Dog’

Not type ‘Person’

Object-Oriented hierarchies, code reuse 7

James Tam

Driver.main()

Person regPerson = new Person();

Hero supPerson = new Hero();

Dog rover = new Dog();

//Instanceof checks if the object is a certain type or

//a subclass of that type (e.g., a Hero is a Person)

if (regPerson instanceof Person)

System.out.println("regPerson is a type of Person");

if (supPerson instanceof Person)

System.out.println("supPerson is also a type of Person");

//Checks for non-hierarchical: Compiler prevents nonsensical

//checks

//if (rover instanceof Person)

// System.out.println("Rover is also a type of Person");

James Tam

Driver.main(): 2

if (supPerson instanceof Hero)

System.out.println("supPerson is a type of Hero");

//Checks within hierarchy: Compiler doesn't prevent

if (regPerson instanceof Hero)

System.out.println("[Should never appear]: regPerson is a

type of Hero");

Object-Oriented hierarchies, code reuse 8

James Tam

Containers: Homogeneous

• Recall that arrays must be homogeneous: all elements must
be of the same type e.g., int [] grades

• Again recall: A child class is an instance of the parent (a more
specific instance with more capabilities).

• If a container, such as an array is needed for use in
conjunction with an inheritance hierarchy then the type of
each element can simply be the parent.
StarShip [] array = new StarShip[2];

array[0] = new StarShip(); // [0] wants a StarShip, gets a StarShip

array[1] = new KlingStarShip(); // [1] wants a StarShip, gets a

// KlingStarShip (even better!)

StarShip

+attack()

KlingStarShip

+utterBattleCry()

James Tam

The Parent Of All Classes

•You’ve already employed inheritance.

•Class Object is at the top of the inheritance hierarchy.

•Inheritance from class Object is implicit.

•All other classes automatically inherit its attributes and
methods (left and right are logically the same)
class Person class Person extends Object

{ {

} }

-e.g., “toString()” are available to its child classes

•For more information about this class see the url (last visited
2021):

• https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/String.html

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/String.html

Object-Oriented hierarchies, code reuse 9

James Tam

The Parent Of All Classes (2)

• This means that if you want to have an array that can contain
any type of Java object then it can be an array of type
Object.
- Object [] array = new Object[SIZE];

• Built-in array-like classes such as class Vector (an array that
‘automatically’ resizes itself consists of an array attribute
whose type is class Object)
- For more information on class Vector (last visited 2021):
- https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Vector.html

James Tam

Determining Type: Hierarchies

• As mentioned: normally type checking should not be needed
for a polymorphic method (the child class overrides a parent
method).
- No instanceof needed

• However type checking is needed if a method specific to the
child is being invoked.
•Check the type with the instanceof is needed StarShip

+attack()

KlingStarShip
+utterBattleCry

()

Person
+doDailyTasks()

Hero
+doDailyTasks()

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Vector.html

Object-Oriented hierarchies, code reuse 10

James Tam

Example: Containers With ‘Different’ Types

• Name of the folder containing the complete example:
7hierarchiesContainment

James Tam

Class StarShip

public class StarShip {
public static final int MAX_HULL = 400;
public static final char DEFAULT_APPEARANCE = 'C';
public static final int MAX_DAMAGE = 50;
private char appearance;
private int hullValue;

public StarShip() {
appearance = DEFAULT_APPEARANCE;
hullValue = MAX_HULL;

}

public StarShip (int hull) {
appearance = DEFAULT_APPEARANCE;
hullValue = hull;

}

Object-Oriented hierarchies, code reuse 11

James Tam

Class StarShip (2)

public StarShip (char newAppearance) {
this();
appearance = newAppearance;

}

public int attack() {
System.out.println("<<< StarShip.attack() >>>");
return(MAX_DAMAGE);

}

James Tam

Class StarShip (3): Get()s, Set()s

public char getAppearance() {
return appearance;

}

public int getHullValue() {
return(hullValue);

}

public void setAppearance(char newAppearance) {
appearance = newAppearance;

}

public void setHull(int newHullValue) {
hullValue = newHullValue;

}
}

Object-Oriented hierarchies, code reuse 12

James Tam

Class FedStarShip

public class FedStarShip extends StarShip {
public static final int MAX_HULL = 800;
public static final char DEFAULT_APPEARANCE = 'F';
public static final int MAX_DIE_ROLL = 6;
public static final int DIE_ROLL_BOOSTER = 1;
public static final int NUM_DICE = 20;

public FedStarShip() {
super();
setHull(MAX_HULL); //800 not 400 due to shadowing
setAppearance(DEFAULT_APPEARANCE); //‘F’ not ‘C’

}

public void regenerate() { //Unique method
int temp = hullValue + 40;
if (temp <= MAX_HULL)

hullValue = temp;
}

Shadows
parent
constants

James Tam

Class FedStarShip (2)

//Overridden / polymorphic method
public int attack() {

System.out.println("<<< FedStarShip.attack() >>>");
Random aGenerator = new Random();
int i = 0;
int tempDamage = 0;
int totalDamage = 0;

for (i = 0; i < NUM_DICE; i++)
{

tempDamage = aGenerator.nextInt(MAX_DIE_ROLL) +
DIE_ROLL_BOOSTER;

totalDamage = totalDamage + tempDamage;
}
return(totalDamage);

}
}

1

6

20

Object-Oriented hierarchies, code reuse 13

James Tam

Class KlingStarShip

public class KlingStarShip extends StarShip {
public static final char DEFAULT_APPEARANCE = 'K';
public static final int MAX_DIE_ROLL = 12;
public static final int DIE_ROLL_BOOSTER = 1;
public static final int NUM_DICE = 20;

public KlingStarShip() {
super();
setAppearance(DEFAULT_APPEARANCE);

}
//Unique to KlingStarShip objects
public void utterBattleCry() {

System.out.println("Heghlu'meH QaQ jajvam!");
}

}

James Tam

Class KlingStarShip (2)

//Overridden / polymorphic method
public int attack() {

System.out.println("<<< KlingStarShip.attack() >>>");
Random aGenerator = new Random();
int i = 0;
int tempDamage = 0;
int totalDamage = 0;

for (i = 0; i < NUM_DICE; i++) {
tempDamage = aGenerator.nextInt(MAX_DIE_ROLL) +

DIE_ROLL_BOOSTER;
totalDamage = totalDamage + tempDamage;

}
return(totalDamage);

}

12

1

20

Object-Oriented hierarchies, code reuse 14

James Tam

Driver Class: SpaceSimulator

public class SpaceSimulator
{

public static void main(String [] args)
{

Galaxy alpha = new Galaxy();
alpha.display();
alpha.runSimulatedAttacks();

}
}

James Tam

Class Galaxy

public class Galaxy {
public static final int SIZE = 4;
private StarShip [][] grid;

Object-Oriented hierarchies, code reuse 15

James Tam

Class Galaxy (2)

public Galaxy() {
boolean squareOccupied = false;
grid = new StarShip [SIZE][SIZE];
int r;
int c;
int hull;

for (r = 0; r < SIZE; r++) {
for (c = 0; c < SIZE; c++)
{

grid[r][c] = null;
}

}
grid[0][0] = new FedStarShip();
grid[0][1] = new KlingStarShip();
grid[1][0] = new StarShip();

}

James Tam

Class Galaxy (3)

public void runSimulatedAttacks() {

int damage;

damage = grid[0][0].attack();

System.out.println("Fed ship attacks for: " + damage);

System.out.println();

damage = grid[0][1].attack();

System.out.println("Kling ship attacks for: " + damage);

System.out.println();

damage = grid[1][0].attack();

System.out.println("Old style ship attacks for: " +

damage);

System.out.println();

Type check not
needed
because:

attack() is
overridden /
polymorphic

Object-Oriented hierarchies, code reuse 16

James Tam

Class Galaxy (4)

/* Won't work because it's an array of references

to StarShips not KlingStarShips.

grid[1][0].utterBattleCry(); */

if (grid[0][0] instanceof KlingStarShip)

((KlingStarShip) grid[0][0]).utterBattleCry();

if (grid[0][1] instanceof KlingStarShip)

((KlingStarShip) grid[0][1]).utterBattleCry();

if (grid[1][0] instanceof KlingStarShip)

((KlingStarShip) grid[1][0]).utterBattleCry();

}

} // End runSimulatedAttacks()

Type check
‘instanceof’
needed because:

Array of StarShips
but
utterBattleCry()
unique to
KlingStarShip

James Tam

Multiple Inheritance

• What happens if some behaviors or attributes are common to
a group of classes but some of those classes include behaviors
shared with other groups?

• Or some groups of classes share some behaviors but not
others?

Swimmers

swim()

WaterBreathersFlyers

fly()

Hawk Eagle Duck FishDolphin

Object-Oriented hierarchies, code reuse 17

James Tam

Multiple Inheritance (2)

• It is implemented in some languages e.g., C++

• It is not implemented in other languages e.g., Java

• Pro: It allows for more than one parent class
- (JT: rarely needed but nice to have that capability for that odd exceptional

case).

• Con: Languages that allow for multiple inheritance require a
more complex implementation even for single inheritance
(classes only have one parent) cases.

WingedFlyer

fly()

Hawk Eagle Human

MachineFlyer

fly()

BirdMan

James Tam

You Should Now Know

• How to call methods that are unique to a child class when the
type may be either parent or a child.

• How casting works within an inheritance hierarchy
• When the instanceof operator should and should not be used to

check for type in an inheritance hierarchy

• Class Object is the parent of all classes in Java
- Capabilities inherited from the parent (if you refer to the API for class

Object)

• How homogeneous composite types (such as arrays) can
appear to contain multiple types within one container

Object-Oriented hierarchies, code reuse 18

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 35

