
Object-Oriented hierarchies, code reuse 1

James Tam

Code Reuse Through
Hierarchies

Part 1: defining commonalities between
classes in parent using inheritance.

James Tam

Real Life Hierarchies

Base entity:
• Attributes: age, height, weight
• Actions: eat(), sleep(), excrete(), multiply()

Derived entity:”martial artist” has all
attributes and actions of base entity plus
• Attributes: belt/level
• Actions: ironPalmStrike(),shadowlessKick()

Derived entity: ‘spy’ has all attributes and
actions of base entity plus
• Attributes: territory, code name e.g. 0-0TAM
• Actions: stealth(), codebreaking(), lockPicking()

Object-Oriented hierarchies, code reuse 2

James Tam

Review: Association Relation Between Classes

•One type of association relationship is a ‘has-a’ relation (also
known as “aggregation”).
- E.g. 1, A car <has-a> engine.

- E.g. 2, A lecture <has-a> student.

•Typically this type of relationship exists between classes when
a class is an attribute of another class.

public class Car {
private Engine anEngine;
private Lights carLights;
public start() {

anEngine.ignite();
carLight.turnOn();

}
}

public class Engine {
public boolean ignite() {
.. }

}

public class Lights {
private boolean isOn;
public void turnOn() {

isOn = true;}
}

James Tam

A New Type Of Association: Is-A (Inheritance)

•An inheritance relation exists between two classes if one class is
a more specific variant type of another class

Vehicle

Motorcycle BusCar

Mini Full sizedSUV Sports car

Object-Oriented hierarchies, code reuse 3

James Tam

Recall O-O Approach: Finding Candidate
Classes

James Tam

What If There Are Commonalities Between Classes

• Examples:
- All birds ‘fly’

- Some types of animals ‘swim’: fish, penguins, some snakes, crocodiles,
some birds

- All animals ‘eat’, ‘drink’, ‘sleep’ etc.

- Under the current approach you would have the same behaviors
repeated over and over!

Hawk

eat()

sleep()

drink()

King Penguin

eat()

sleep()

drink()

Lion

eat()

sleep()

drink()

Waste!Waste! Waste!

Object-Oriented hierarchies, code reuse 4

James Tam

New Technique: Inheritance

• When designing an Object-Oriented program, look for
common behaviors and attributes
- E.g., color, species, eat(), drink(), sleep()

- These commonalities are defined in a ‘parent’ class

Animal

+eat()

+sleep()

+drink()

-color

-species

James Tam

New Technique : Inheritance (2)

• These commonalities are defined in a ‘parent’ class
- Classes that are derived from (are more specific versions) of the parent

class are referred to a ‘child’ classes.

• As appropriate other ‘child’ classes will directly include or
‘inherit’ all the non-private attributes and behaviors of the
parent class.
- ‘Privates’ are still accessible through public methods.

Animal

+eat()

+sleep()

+drink()

-color

-species

Hawk King Penguin Lion

Object-Oriented hierarchies, code reuse 5

James Tam

Defining A Class That Inherits From Another

Format:
public class <Name of child class> extends <Name of parent
class>

{

// Definition of child class – only what is unique to

// this class

}

Example:
public class Lion extends Animal

{

public void roar() {

System.out.println("Rawr!");

}

}

This means that a Lion
object AUTOMATICALLY has
all the capabilities of an
Animal object

The only attributes
and methods that
need to be specified
are the ones unique
to a lion

James Tam

First Inheritance Example

• Name of the folder containing the complete example:
1basicExample

Object-Oriented hierarchies, code reuse 6

James Tam

Class Person

public class Person
{

private int age;

public Person() {
age = 0;

}

public Person(int anAge) {
age = anAge;

}

public void doPersonStuff() {
System.out.println("Eat, sleep, drink, excrete, be" +

" fruitful");
}

}

Image of James

Tam curtesy of

James Tam

James Tam

Class Hero: A Hero Is A Person

public class Hero extends Person {

}

This automatically gives

instances of class Hero all

the capabilities of an instance

of class Person

Object-Oriented hierarchies, code reuse 7

James Tam

Class Hero: A Person But A Whole Lot More

public class Hero extends Person
{

private int heroicCount;

public Hero()
{

heroicCount = 0;
}

public void doHeroStuff()
{

System.out.println("Saving the world for: truth!," +
" justice!, and all that good " +
" stuff!");

heroicCount++;
}

}

Image of super

James Tam curtesy

of James Tam

James Tam

The Driver Class: Person Vs. Hero

public class Driver
{

public static void main(String [] args)
{

Person bob = new Person();
bob.doPersonStuff();
System.out.println();

Hero clark = new Hero();
clark.doPersonStuff();
clark.doHeroStuff();

}
}

Object-Oriented hierarchies, code reuse 8

James Tam

Benefit Of Employing Inheritance

• Code reuse:
- The common and accessible attributes and methods of the parent will

automatically be available in all the children.

Person

+doPersonStuff()

HeroAccountant Teacher

James Tam

New Terminology: Method Overriding

• Overriding occurs when the parent class has a different version
of a method than was implemented in the child class.

Hero

+doPersonStuff()

Person
+doPersonStuff()

Object-Oriented hierarchies, code reuse 9

James Tam

Reminder: Method Overriding Vs. Method
Overloading

• Method overriding: different versions of a method in parent
vs. child

• Method overloading: different versions of a method in a
single class definition

Person

Hero

+doPersonStuff()

+doPersonStuff()

+Hero()

+Hero(int)

+Hero(int,String)

James Tam

Method Overriding Example

• Name of the folder containing the complete example:
2overriding

Object-Oriented hierarchies, code reuse 10

James Tam

Class Hero

public class Hero extends Person

{

//New method: the rest of the class is the same as the

//previous version

public void doPersonStuff()

{

System.out.println("Pffff I need not go about " +

"mundane niceties such as eating!");

}

}

James Tam

The Driver Class (Included For Reference)

public class Driver
{

public static void main(String [] args)
{

Person bob = new Person();
bob.doPersonStuff();
System.out.println();

Hero clark = new Hero();
clark.doPersonStuff();
...

}
}

Object-Oriented hierarchies, code reuse 11

James Tam

Overriding: Who Do We Call?

• bob.doPersonStuff();

• clark.doPersonStuff();

James Tam

New Term: Binding

• When a reference and a method are specified together,
binding determines which version of the method is called.

• If neither method overloading nor method overriding are
employed then binding is very easy to determine.

Person jim = new Person();

jim.setAge(27);

public class Person {

private int age;

public Person() {

age = 0;

}

public setAge(int anAge) {

age = anAge;

}

}

Object-Oriented hierarchies, code reuse 12

James Tam

New Term: Binding (2)

• Early binding (overloading): determined at compile time (by
‘javac’)
- Parameter list determines

• Late binding (overriding): determined at run time (by ‘java’)
- The type of the implicit parameter (“this” reference) determines

James Tam

Method Overloading Vs. Method Overriding

•Method Overloading (what you should know)
-Multiple method implementations for the same class

-Each method has the same name but the type, number or order of the
parameters is different (signatures are not the same)

-The method that is actually called is determined at program compile
time (early binding).

-i.e., <reference name>.<method name>(parameter list);

Distinguishes

overloaded methods

Object-Oriented hierarchies, code reuse 13

James Tam

Method Overloading Vs. Method Overriding
(2)

•Examples of method overloading:

public class Foo
{

public void display() { }
public void display(int i) { }
public void display(char ch) { }

}

Foo f = new Foo ();
f.display();
f.display(10);
f.display(‘c’);

Binding at
compile time
(early)

James Tam

Method Overloading Vs. Method Overriding
(3)

•Method Overriding
-The method is implemented differently between the parent and child
classes.

-Each method has the same return value, name and parameter list
(identical signatures).

-The method that is actually called is determined at program run time
(late binding).

-i.e., <reference name>.<method name> (parameter list);

The type of the reference

(implicit parameter “this”)

distinguishes overridden

methods

Object-Oriented hierarchies, code reuse 14

James Tam

Example Overriding: The Type Of The Reference
Determines The Method Called

public class Person {
public void doPersonStuff() {

...
}

}

public class Hero extends Person {
public void doPersonStuff() {

...
}

}
// Bob is a Person
bob.doPersonstuff();

// Clarke is a Hero
clark.doPersonStuff();

James Tam

New Terminology: Polymorphism

Poly = many Morphic = forms

•A polymorphic method has an implementation in the parent
class and a different implementation the child class.

•Polymorphism: the specific method called will be automatically
be determined without any type checking needed (the type of
reference determines which method is called)

•Recall the example:

Object-Oriented hierarchies, code reuse 15

James Tam

New Terminology: Super-class Vs. Sub-class

All people

on the earth

All people

in Canada

(Superset –

Bigger)

(Subset -

smaller)

Superclass (Button)

Subclass (RadioButton)

James Tam

The ‘Super’ Keyword

• Used to access the parts of the super-class.

• Format:
<super>.<method or attribute>

• Example:
public void doPersonStuff()
{

System.out.println("Pffff I need not go about mundane"+
" niceties such as eating!");

super.doPersonStuff();

Parent’s version of
method

Object-Oriented hierarchies, code reuse 16

James Tam

Super Keyword: When It’s Needed

• You only need this keyword when accessing non-unique
methods or attributes (exist in both the super and sub-
classes).

• Without the super keyword then the sub-class will be
accessed

Person
+doPersonStuff()

Hero

+doPersonStuff ()

For a ‘Hero’ to access super
class method (use ‘super’)
super.doPersonStuff()

For a ‘Hero’ to access this
classes version (no super
keyword)
doPersonStuff()

James Tam

Super Keyword: When It’s Not Needed

• If that method or attribute exists in only one class definition
then there is no ambiguity.

Person
+doPersonStuff ()

Hero

+doHeroStuff ()

For a ‘Hero’ doPersonStuff()

(No such method in class Hero
to be confused with this
method).

For a ‘Hero’
doHeroStuff()

Object-Oriented hierarchies, code reuse 17

James Tam

Something Especially Good?

• Note: There Is No Super.Super In Java

James Tam

Using The Super Keyword

• Name of the folder containing the complete example:
3super

- Note: this example illustrated the use of the super keyword in
conjunction with a method “doPersonStuff”.

- As long as access permissions allow it, any attribute or method in the
super class can be accessed in the same way using the ‘super’ keyword.

Object-Oriented hierarchies, code reuse 18

James Tam

Class Hero: Using The Super Keyword

public class Hero extends Person
{

public void doPersonStuff()
{

System.out.println("Pffff I need not go about mundane" +
" niceties such as eating!");

timeDelay();
super.doPersonStuff();
timeDelay();
// Hero specific output
System.out.println("...well actually I do :$");

}

private void timeDelay()
{

final long DELAY_TIME = 1999999999;
for (long i = 0; i <= DELAY_TIME; i++);

}
}

For any Person

James Tam

Using The Super Keyword Again

• This fourth example illustrates the use of this keyword with
the constructor and the (new to this example) toString()
method

• Note how the toString() method delegates some
behavior to the parent class and implements some of the
behaviors in the child class.

• Name of the folder containing the complete example :
4superConstructors

Object-Oriented hierarchies, code reuse 19

James Tam

Class Person

public class Person {
private int age;

public Person() {
age = 0;

}

public Person(int anAge) {
age = anAge;

}

public void doPersonStuff() {
System.out.println("Eat, sleep, drink, execrate, be" +

" fruitful");
}

James Tam

Class Person (2)

//NEW
public String toString()
{

String s = "";
s = s + "Age of the person: " + age;
return(s);

}
}

Object-Oriented hierarchies, code reuse 20

James Tam

Class Hero: Using Super()

public class Hero extends Person
{

private int heroicCount;

public Hero() {
super();
heroicCount = 0;

}

public Hero(int anAge) {
super(anAge);
heroicCount = 0;

}

public void doHeroStuff() {
...
heroicCount++;

}

public Person() {

age = 0;

}

public Person(int anAge) {

age = anAge;

}

James Tam

Class Hero: Using Super(): 2

//NEW
public String toString()
{

String s = super.toString();
if (s != null)

s = s + "\n" + "Count of noble and heroic deeds " +
heroicCount;

return(s);
}

// Class Person
public String toString()
{

String s = "";
s = s + "Age of the person: " + age;
return(s);

}

Object-Oriented hierarchies, code reuse 21

James Tam

The Driver Class

public class Driver
{

public static void main(String [] args)
{

Person bob = new Person(55);
Hero clark = new Hero(25);

public Person(int anAge){
age = anAge;

}

public Hero(int anAge){
super(anAge);
heroicCount = 0;

}

public Person(int anAge){
age = anAge;

}

James Tam

The Driver Class: 2

System.out.println("Bob\n" + bob);

System.out.println("Clark\n" + clark);
}

}

public String toString() // Person

{

String s = "";

s = s + "Age of the person: " + age;

return(s);

}

public String toString()

{

String s = "";

s = s + "Age of the person: " + age;

return(s);

}

public String toString() // Hero

{

String s = super.toString();

if (s != null)

s = s + "\n" + "Count of noble and heroic deeds " +

heroicCount;

return(s);

}

Object-Oriented hierarchies, code reuse 22

James Tam

Example 4 Synopsis

• Using the super keyword to access the parent constructors

• Uses the super keyword to access the parent implementation
of toString()

• Both method calls would delegate some of the required
behaviors to the parent (access modify parent class attributes)
and then the child implement the remaining behavior (access
child class attributes)

James Tam

Keep In Mind: Inheritance Is A One Way
Relationship!

• A Hero is a Person but a Person is not a Hero!

• That means that while the sub-class can access the super-class
parts but the super-class cannot access the sub-class parts.

New (sub) class

•New attributes

•New behaviors

Existing (super)

class

•Attributes

•Behaviors

Object-Oriented hierarchies, code reuse 23

James Tam

Access Modifiers And Inheritance

• Private ‘-‘: still works as-is, private attributes and methods
can only be accessed within that classes’ methods.
- Child classes, similar to other classes must access private attributes

through public methods.

• Public ‘+’: still works as-is, public attributes and methods can
be accessed anywhere.

• New level of access, Protected ‘#’: can access the method or
attribute in the class or its sub-classes.

James Tam

Summary: Levels Of Access Permissions

Access

level

Accessible to

Same

class Subclass

Not a

subclass

Public Yes Yes Yes

Protected Yes Yes No

Private Yes No No

Object-Oriented hierarchies, code reuse 24

James Tam

Levels Of Access Permission: An Example

public class P
{

private int num1;
protected int num2;
public int num3;
// Can access num1, num2 & num3 here.

}

public class C extends P
{

// Can’t access num1 here
// Can access num2, num3

}

public class Driver
{

// Can’t access num1 here and generally can’t access num2
// here
// Can access num3 here

}

James Tam

General Rules Of Thumb

•Variable attributes should not have protected access but
instead should be private.

•Most methods should be public.

•Methods that are used only by the parent and child classes
should be made protected.

Object-Oriented hierarchies, code reuse 25

James Tam

Updated Scoping Rules

•When referring to an identifier in a method of a class
1. Look in the local memory space for that method

2. Look in the definition of the class

3. New: Look in the definition of the parent class

James Tam

Updated Scoping Rules (2)

public class P

{

}

public class C extends P

{

public void method ()

{

}

}

<<< First: Local >>>

<<< Second: Attribute>>>

<<< Third: Parent’s attribute >>>

Reference to an identifier e.g., ‘num’

Similar to how local variables
can shadow attributes, the
child attributes can shadow
parent attributes.

Object-Oriented hierarchies, code reuse 26

James Tam

Updated Scoping Rules: A Trace

• Name of the folder containing the complete example :
5scope

James Tam

Scoping Rules: Review Code (1 Class)

public class Driver {
public static void main(String [] args) {

System.out.println("REVIEW");
System.out.println("------");
P = new P();
p.method1();
System.out.println();

public class P {
protected int x = 1;
private int y = 2;

public void method1() {
int x = 10;
int y = 20;
System.out.println("P.method1()");
System.out.println("Locals shadow attributes");
System.out.println("x/y: " + x + " " + y);

}

Object-Oriented hierarchies, code reuse 27

James Tam

Scoping Rules: Review Code (1 Class): 2

p.method2();
System.out.println();

public void method2()
{

int x = 10;
int y = 20;
System.out.println("P.method2()");
System.out.println("Loc x/y: " + x + " " + y);
System.out.println("Attr x/y: " + this.x + " " +

this.y);
}

James Tam

Updated Scoping Rules

System.out.println("NEW: INHERITANCE HIERARCHIES");
System.out.println("----------------------------");
C c = new C();
c.method1();

// Child
public class C extends P {

private int x = 3;
private int z = 4;

public void method1() {
System.out.println("C.method1()");
System.out.println("Child attributes");
System.out.println("x/z: " + this.x + " " +

this.z);
}

Object-Oriented hierarchies, code reuse 28

James Tam

Updated Scoping Rules (2)

c.method2();

// Child
public void method2() {

int x = 100;
int y = 200;
int z = 300;
System.out.println("C.method2()");
System.out.println("Local shadows all");
System.out.println("x/y/z: " + x + " " + y + " " +

z);
}

James Tam

Updated Scoping Rules (3)

c.method3();

// Child
public void method3() {

int x = 100;
int y = 200;
int z = 300;
System.out.println("C.method3()");
System.out.println("Loc x/y/z: " + x + " " + y + " " + z);

System.out.println("P(x/y): " + super.x + " " + super.getY());
// super.y : syntax error, access permission violated
System.out.println("C(x/z): " + this.x + " " + this.z);
}

public class P
{

protected int x = 1;
private int y = 2;

Object-Oriented hierarchies, code reuse 29

James Tam

The Final Modifier (Inheritance)

•What you know: the keyword final means unchanging (used
in conjunction with the declaration of constants)

•Methods preceded by the final modifier cannot be overridden

e.g., public final void cannot_override()

•Classes preceded by the final modifier cannot be extended

-e.g., final public class CANT_BE_EXTENDED

James Tam

You Should Now Know

• What is inheritance, when to employ it, how to employ it in
Java

• Defining parent classes by looking for a commonalities

• What are the benefits of employing inheritance
• What is method overriding

• How does it differ from method overloading
• What is polymorphism
• The difference between early vs. late binding and the criteria used to

determine the method ‘bound’ in each case

• How does the ‘protected’ level of access permission work,
how do private and public access permissions work with
an inheritance hierarchy.

- Under what situations should each level of permission be employed

Object-Oriented hierarchies, code reuse 30

James Tam

You Should Now Know (2)

•Updated scoping rules (includes inheritance) and how
shadowing works with an inheritance hierarchy

•How the ‘super’ keyword works, when it is and is not needed

•What is the effect of the keyword ‘final’ on inheritance
relationships

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 60

