
Advanced Java concepts 1

James Tam

Advanced Java Programming

Part 5: The this reference and the 
this() method. Useful methods to 
define for your classes: 
toString(), equals()

James Tam

Self Reference: The ‘This’ Reference

•New term, this reference: A reference to the object (called the “this” reference)

•From every (non-static) method of an object there exists a reference to the object 
(called the “this” reference) 1

main(String args []) {

int x;

Person fred = new Person();

Person barney = new Person();

fred.setAge(35);

}

public class Person {

private int age;

public void setAge(int anAge) {

age = anAge;

}

...

}

1 Similar to the ‘self’ keyword of Python except that ‘this’ is a syntactically enforced name (can’t use another 

name).

The ‘this’ reference is implicitly 
passed as a parameter to all non-
static methods. One use of ‘this’ is 
to distinguish which object’s method 
is being invoked (in this case Fred vs. 
Barney)

This is one reason why methods must 
be invoked via a reference name (the 
contents of the reference ‘fred’ will be 
copied into the ‘this’ reference (both 
point to the ‘Fred’ object). 



Advanced Java concepts 2

James Tam

The ‘This’ Reference Is Automatically 
Referenced Inside (Non-Static) Methods

public class Person {

private int age;

public void setAge(int anAge) {

// These two statements are equivalent

age = anAge;

this.age = anAge;

}

}

James Tam

Parameter Types: Explicit Vs. Implicit

•New term, explicit parameter(s): explicitly passed (you can see 
them in the round brackets when the method is called and 
defined).
- Method calls

fred.setAge(10);    //10 explicit
barney.setAge(num);   //num explicit

- Method definition
public void setAge(int age) { ... }  //age explicit

•New term, implicit parameter: implicitly passed into a method 
(automatically passed and cannot be explicitly passed): the 
‘this’ reference.
- Method call

Person bill = new Person();
bill.setAge(100);

- Method definition
public void setAge(int age) {this.age = age;} //‘this’ is implicit



Advanced Java concepts 3

James Tam

Benefits Of ‘This’: Attributes

•One side benefit is the this reference can make it very clear 
which attributes are being accessed/modified.
public class Person

{

private int age;

public void setAge(int age) {

this.age = age;

}

}

Parameter 
(local 
variable) 
‘age’

Attribute 
‘age’

James Tam

Benefits Of ‘This’: Parameters

• Another side benefit is the this reference can make it clear 
which object is being accessed e.g., when a class method takes 
as a explicit parameter an instance of that class1

main (String [] args) {

Person fred = new Person("Fred");

Person barney = new Person("Barney");

barney.nameBestBuddy(fred);    // JT: Explicit? Implicit?

}

// JT: What will be the output?

public void nameBestBuddy(Person aPerson) {

println(this.name + " best friend is " + aPerson.name);

}

1 JT: more on class methods that take parameters which are of the class type (e.g. 
Person) later – see the ‘equals()’ method



Advanced Java concepts 4

James Tam

Main Benefit Of ‘This’: Scope

• Recall: according to scoping rules, local variables are not 
accessible outside of that function or method (unless returned 
back to the caller or passed into another method).
- The this implicit parameter can allow access to these locals.

main (String [] args) {
int age = 27;
Person jim = new Person();
jim.setAge(age);

}
class Person {

public void setAge(int age) {
this.age = age;

}

main()

age 27

jim.setAge(         )

jim (implicit)

age 27this

jim .age

27 
(explicit)

Normally the object referred to by the ‘jim’ reference not 
accessible outside of main() but the ‘this’ reference 
contains it’s address (implicit pass by reference)

James Tam

•Recall: static methods do not require an object to be 
instantiated because they are invoked via the class name not a 
reference name.
int result = Math.abs(-12);

•That means static methods do not have the implicit ‘this’ 
parameter passed in.

•Also recall I said for now avoid [for the ‘Driver’ class]:
- Defining attributes for the Driver

- Defining methods for the Driver (other than the main method)

- Unless the attributes and the methods are static they cannot be accessed 
without instantiating the Driver class.

Static Methods: No ‘This’ Reference



Advanced Java concepts 5

James Tam

This()

• Can be used when constructors have been overloaded.

• Calls one version of the constructor from another constructor.

• Name of the folder containing the complete example :

11thisMethod

James Tam

The Driver Class

public class Driver

{

public static void main(String [] args)

{

Person aPerson = new Person();

aPerson.show();

aPerson = new Person(99);

aPerson.show();

aPerson = new Person("Bob");

aPerson.show();

}

}



Advanced Java concepts 6

James Tam

Class Person

public class Person {

private int age;

private String name;

public Person() {

age = -1;

name = "none";

}

public Person(int anAge) {

this();

age = anAge;

}

James Tam

Class Person (2)

public Person(String aName) {

this();

name = aName;

}

public void show()

{

System.out.println(age + " " + name);

}

}



Advanced Java concepts 7

James Tam

Displaying State: Evaluating The Previous Program

public void show()

{

System.out.println(age + " " + name);

}

James Tam

Displaying The Current State Of Objects

•The toString() method provides information about the 
state of a particular object (contents of important attributes).
- Returns a string representation of the state (current value of variable 

attributes and any other relevant information).

•It‘s automatically be called whenever a reference to 
an object is passed as a parameter to 
“print()/println()”.
E.g. class Person { … }

…

Person p = new Person();

//The following instructions are equivalent

…println(p);

…println(p.toString());



Advanced Java concepts 8

James Tam

toString() Example

•Name of the folder containing the complete example :
12toString

James Tam

Class Person

public class Person

{

private int height;

private int weight;

private String name;

public Person(String name, int height, int weight)

{

this.name = name;

this.height = height;

this.weight = weight;

}



Advanced Java concepts 9

James Tam

Class Person (2)

public String getName()

{

return(name);

}

public int getHeight()

{

return(height);

}

public int getWeight()

{

return(weight);

}

James Tam

Class Person (3)

public String toString()

{

String s;

s = "Name: " + name + "\t";

s = s + "Height: " + height + "\t";

s = s + "Weight: " + weight + "\t";

return(s);

}

}



Advanced Java concepts 10

James Tam

The Driver Class

public class Driver

{

public static void main(String [] args)

{

Person jim = new Person("Jim",69,160);

System.out.println("Attributes via accessors()");

System.out.println("\t" + jim.getName() + " " + 

jim.getHeight() +

" " + jim.getWeight());

System.out.println("Attributes via toString()");

System.out.println(jim);

}

}

James Tam

Comparing Objects

•Recall from the discussion of parameter passing (pass by 
reference) that a reference contains the address of an object or 
array.

•Using the comparison operator on the references ‘==‘ will only 
determine if the address (and not data) is the same.
Person p1 = new Person(12);

Person p2 = new Person(12);

if (p1 == p2)

p1

Person object

Age = 12

p2

Person object

Age = 12



Advanced Java concepts 11

James Tam

Comparing Objects (2)

•Either each attribute of each object must be manually 
compared or else some form of equals() method must be 
implemented.

James Tam

Implementing Equals()

•Name of the folder containing the complete example:

13equals



Advanced Java concepts 12

James Tam

Class Person

public class Person {

private int height;

private int weight;

public Person(int height, int weight) {

this.height = height;

this.weight = weight;

}

public int getHeight() {

return(height);

}

public int getWeight() {

return(weight);

}

James Tam

Class Person (2)

public void setHeight(int height) {

this.height = height;

}

public void setWeight(int weight) {

this.weight = weight;

}

public boolean equals(Person compareTo) {

boolean flag = true;

//Access to compareTo’s private attributes allowed here!

if (this.height != compareTo.height ||

this.weight != compareTo.weight)

flag = false;

return(flag);

}

}

Implicit: Jim Explicit: Bob



Advanced Java concepts 13

James Tam

The Driver Class

public class Driver

{

public static void main(String [] args)

{

Person jim = new Person(69,160);

Person bob = new Person(72,175);

James Tam

The Driver Class (2)

System.out.println("Different data, addresses");

System.out.println("Compare data via accessors()");                   

if (jim.getHeight() == bob.getHeight() &&

jim.getWeight() == bob.getWeight())

System.out.println("\tObjects same data");

else

System.out.println("\tNot equal");

System.out.println("Compare data via equals()");

if (jim.equals(bob) == true)

System.out.println("\tObjects same data");

else

System.out.println("\tNot equal");

System.out.println("Compare addresses");

if (jim == bob)

System.out.println("\tSame address");

else

System.out.println("\tDifferent addresses");

new 
Person(69,160);

new 
Person(72,175);



Advanced Java concepts 14

James Tam

The Driver Class (3)

System.out.println();

System.out.println("Same data, different addresses");

jim.setHeight(72);

jim.setWeight(175);

if (jim.equals(bob) == true)

System.out.println("\tObjects same data");

else

System.out.println("\tNot equal");

System.out.println("Compare addresses");

if (jim == bob)

System.out.println("\tSame address");

else

System.out.println("\tDifferent addresses");

Person(72,175); # via set()

Person(72,175);

James Tam

The Driver Class (4)

System.out.println();

System.out.println("Same data, different addresses");

jim.setHeight(72);

jim.setWeight(175);

if (jim.equals(bob) == true)

System.out.println("\tObjects same data");

else

System.out.println("\tNot equal");

System.out.println("Compare addresses");

if (jim == bob)

System.out.println("\tSame address");

else

System.out.println("\tDifferent addresses");

Person(72,175); # via set()

Person(72,175);



Advanced Java concepts 15

James Tam

The Driver Class (5)

System.out.println();

System.out.println("Same addresses");

jim = bob;

if (jim == bob)

System.out.println("\tSame address");

else

System.out.println("\tDifferent addresses");

jim = bob;

James Tam

After This Section You Should Now Know

• What is the this reference, why is it needed, how does it 
work

• What is the this() method and how does it work

• Why and how to define these methods for your class 
definitions
-toString

-equals



Advanced Java concepts 16

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation 
are used with permission from Microsoft.”

slide 31


