Advanced Java Programming

Part 4: The static and final
keywords, useful methods to define
for your classes: toString(),
equals()

Advanced Java concepts

Image copyright unknown,

We Create Several Sheep

James Tam




Question: Who Tracks The Size Of The Flock?

Image copyright unknown James Tam

Answer: None Of The Above!

eInformation about all instances of a class should not be tracked
by an individual object.

¢So far we have used instance fields.

eEach instance of an object contains it’s own set of instance
fields which can contain information unique to the instance.
public class Sheep

{
private String name;
}
Object Object Object
name: Bill name: Jim name: Nellie

James Tam

Advanced Java concepts



The Need For Static (Class Attributes)

e Static fields: One instance of the attribute exists for the class
(not one attribute for each instance of the class)

¢JT’s note: in Java static DOES NOT specify unchanging
(constant)
- Reminder: the keyword ‘final’ signifies constant (unchanging)

Class Sheep
flockSize
Object Object Object
name: Bill name: Jim name: Nellie

James Tam

Static (Class) Methods

*New term, static methods: Are associated with the class as a
whole and not individual instances of the class.
—Can be called without having an instances (because it’s
called through the class name not a reference/instance
name).

—Instance method:
Scanner in = new Scanner(System.in);
in.nextInt(); // referenceName.method()

—Class Method:
double squareRoot = Math.sqrt(9); // ClassName.method()

*Typically implemented for classes that are never instantiated
e.g., class Math.

James Tam

Advanced Java concepts




Defining Static Methods/Attributes

Format:
<Access permission> static <attribute or method name>

Example:
class Sheep

{

private static int flockSize = 0;

James Tam

Accessing Static Methods/Attributes

eInside the class definition just specify the name of the attribute
or method.

Example:
class Sheep

{

private static int flockSize = 0;

public Sheep()
{

}

flockSize++;

James Tam

Advanced Java concepts




Accessing Static Methods/Attributes (2)

eQutside the class definition preface the attribute or method
with the name of the class.

Format:
<Class name>.<attribute or method name>

Example:
Sheep.getFlockSize();

James Tam

Static Data And Methods: UML Diagram
eName of the folder containing the complete example :
10classAttributes

Sheep
{flocksize:intl
Driver L’ i’ -name: String
P s +Sheep()
, z +Sheep(aName:String)
P e < _ - ~+getFlockSize():int
P s - -~ +getName():String

Static attribute is ’ /’ -=" +setName(aName:String):
specified using P~ void
underlining

James Tam

Advanced Java concepts



Static Data And Methods: The Driver Class

public class Driver
{
public static void main(String [] args) {
System.out.println();
System.out.println("You start out with " +
Sheep.getFlockSize() +
" sheep");
System.out.println("Creating flock...");
Sheep nellie = new Sheep("Nellie");
Sheep bill = new Sheep("Bill");
Sheep jim = new Sheep();

System.out.println("Current count " +

Sheep.getFlockSize());

James Tam

Static Data And Methods: The Sheep Class

public class Sheep

{
private static int flockSize = ©;
private String name;
public Sheep() {
flockSize++;
name = "No name";
}
public Sheep(String aName) {
flockSize++;
setName (aName);
}
public static int getFlockSize() { return flockSize; }
public String getName() { return name;}
public void setName(String newName) { name = newName; }
}

James Tam

Advanced Java concepts




Rules Of Thumb: Instance Vs. Class Attribute

eReminder:

-Instance attribute:
eStatic keyword is not used
eThere is one instance for each object created
*E.g., class Person { private int age; }

*New term:
- Class attribute:
eRequires the static keyword
eThere is one instance for the entire class
*E.g., class Person { private static int numberPeople; }

eRules of thumb:

-Make it an instance field if the data can vary between instances e.g., age,
height, weight

-Make it a class field if the data relates to all instances e.g., number of
objects created.

*Possibly it may apply if no instances will be created e.g., a debug flag to specify
the mode that the program is operating under

James Tam

Rule Of Thumb: Instance Vs. Class Methods

eReminder:
- Instance method e.g.,
class Person { private int age = 0;
public void haveBirthDay() { age++; }
}
- Class method e.g.,
class Math {
public static double square(double num) {return(num*num);

Y3

James Tam

Advanced Java concepts




Rule Of Thumb: Instance Vs. Class Methods (2)

e Rule of thumb

- Static methods

¢|f a method can be invoked regardless of the number of instances that exist
(e.g.., the method can be run when there are no instances) then it probably
should be a static method.

o|f it never makes sense to instantiate an instance of a class then the method
should probably be a static method.

E.g., the class doesn’t have any variable attributes only static constants such
as class Math no objects are instantiated (more coverage later)
- Non static methods

o|f the above rules don’t apply then the method should likely be an instance
method e.g., the method operates on an instance field.

James Tam

Universally Accessible Constants

* What you currently know
—How to declare constants that are local to a method
class Driver {
main() {
final int A_CONST = 10;

}

* If you need constants that are accessible throughout your
program then declare them as class constants.

James Tam

Advanced Java concepts




Declaring Class Constants

¢ Format:
public class <class name>

{

public final static <type> <NAME> = <value>;

e Example:
public class Person

{
public final static int MAX_AGE = 144;

e Notes:
- The keyword “final” signifies something that cannot change (a constant)
- Because MAX_AGE is a constant the access level can be public.

James Tam

Accessing Class Constants

* Format (outside of the class definition)®:
<Class name>.<constant name>;

* Example (outside of the class definition):
main()

{
System.out.println("Max life span: " + Person.MAX_AGE);

}

* Accessing a class constant inside the class where it’s been

defined does not require the name of the class
public class Person {
public final static int MAX_AGE = 144;
public void sayMax() { System.out.println(MAX_AGE); }

James Tam

Advanced Java concepts




Recap: Static Vs. Final

eStatic: Means there’s one instance of the attribute for the class
(not individual instances for each instance (object) of the class)

eFinal: Means that the attribute cannot change (it is a constant)

public class Foo

{
public static final int numl= 1;
private static int num2; /* Rare */
public final int num3 = 1; /* Why bother (waste) */
private int num4;
}

James Tam

An Example Class With A Static
Implementation

public class Math

{
// Public constants
public static final double E = 2.71..
public static final double PI = 3.14..

// Public methods
public static int abs(int a);
public static long abs(long a);

}

eFor more information about this class go to:
- http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

James Tam

Advanced Java concepts

10



Should A Class Be Entirely Static?

eUsually purely static classes (cannot be instantiated) have only
methods and no data (maybe some constants).

-Rare: mostly cases there’s variable data that is different from object-to-
object so few classes are purely static

eExample (purely for illustration):
Math mathl = new Math();
Math math2 = new Math();
// What’s the difference? Why bother?
mathl.abs() vs. math2.abs();

*\When in doubt DO NOT make attributes and methods static.

James Tam

After This Section You Should Now Know

e Static attributes and methods
-How to create statics
-How to access statics
- When something should be static vs. non-static (instance)
-How to represent static in UML

e How to declare class constants
- The difference between static and final

James Tam

Advanced Java concepts

11



Copyright Notification

e “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

James Tam

Advanced Java concepts

12



