
Advanced Java concepts 1

James Tam

Advanced Java Programming

Part 3: wrapper classes, arrays of
‘objects’

James Tam

Modifying Simple Types (Parameters)

• What to do when only one thing needs to be changed: return
the updated value after the method ends

• What to do when more than one thing needs to be changed:
- Pass an array (e.g., three integers must be modified in a method, then

pass an array of integers with 3 elements).

- Enlist the aid of a wrapper (class).

Image copyright unknown

Advanced Java concepts 2

James Tam

Wrapper Classes

• A class definition built around a simple type
public class Coordinate {

private int xCoordinate;

private int yCoordinate;

...

}

• Benefits illustrated by this example:
- Related pieces of information can be passed into methods together

rather than separately.
Coordinate aLocation = new Coordinate();
Method(aLocation); // vs method(x,y);

- The values of two atomic types x & y can be changed inside a method call
(because an object ‘wraps’ them and the object is passed by reference).

James Tam

Wrapper Classes (2)

• Also Wrapper classes are also used to provide class-like
capabilities (i.e., methods) to simple types (e.g., int) e.g.,
class Integer

-https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/la
ng/class-use/Integer.html (last accessed Feb 2021)

-Example useful method parseInt(String): converting strings to integers

int num = Integer.parseInt("123"); // More on this later

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/lang/class-use/Integer.html

Advanced Java concepts 3

James Tam

Arrays: Parameters And Return Values

• Name of the folder containing the complete example :
9arrayParameters

• Format, method call:
-When the method is called, passing an array as a parameter and storing
a return value appears no different as passing other types.

-Example (list1 and list2 are arrays)

list2 = ape.oneDimensional(list1);

James Tam

Arrays: Parameters And Return Values (2)

• Format, method definition:
- Use ‘square brackets’ to indicate that the return value or parameter is an

array.

- Each dimension requires an additional square bracket.

- One dimensional:

public int [] oneDimensional(int [] array1) { ... }

- Two dimensional:

public char [][] twoDimensional(char [][] array1) {

...

}

Advanced Java concepts 4

James Tam

Array Of ‘Objects’

• Although referred to as an array of objects they are actually
arrays of references to objects.

• Recall for arrays: 2 steps are involved to create the array
int [] array; // Reference to array

array = new int[3]; // Creates array of integers

• Recall for objects: 2 steps are required to create the object
Person jim; // Reference to Person object

jim = new Person(); // Creates object

James Tam

Array Of ‘Objects’ (2)

• An array of objects is actually an array of references to
objects.

• So 3 steps are usually required
- Two steps are still needed to create the array

// Step 1: create reference to array
Person [] somePeople;

// Step 2: create array
somePeople = new Person[3];
•In Java after these two steps each array element will be null.
somePeople[0].setAge(10); // Null pointer exception

Advanced Java concepts 5

James Tam

Array Of ‘Objects’ (3)

- The third step requires traversal through array elements (as needed):
create a new object and have the array element refer to that object.
for (i = 0; i < 3; i++)

{

// Create object, array element refers to that object

somePeople[i] = new Person();

// Now that array element refers to an object, a method

// can be called.

somePeople[i].setAge(i);

}

James Tam

Array Of Objects: Example

• Name of the folders containing the complete example :

9arrayOfReferences/simple

Advanced Java concepts 6

James Tam

Class Person

public class Person {

private int age;

public Person() {

age = 0;

}

public int getAge() {

return(age);

}

public void setAge(int anAge) {

age = anAge;

}

}

James Tam

Driver Class

public class Driver

{

public static void main(String [] args) {

Person [] somePeople; // Reference to array

int i;

somePeople = new Person[3]; // Create array

for (i = 0; i < 3; i++) {

// Create object, each element refers to a newly

// created object

somePeople[i] = new Person();

somePeople[i].setAge(i);

System.out.println("Age: " +

somePeople[i].getAge());

}

}

}

Advanced Java concepts 7

James Tam

Design Example

• Suppose we wanted to simulate a 2D universe in the form of a
numbered grid (‘World’)
class World

{

private [][] Tardis grid;

}

• Each cell in the grid was either an empty void or contained the
object that traveled the grid (‘Tardis’)1

class Tardis

{

}

1 Tardis and “Doctor Who” © BBC

James Tam

General Description Of Program

• The ‘world/universe’ is largely empty.

• Only one cell contains the Tardis.

• The Tardis can randomly move from cell to cell in the grid.

• Each movement of Tardis uses up one unit of energy.

Advanced Java concepts 8

James Tam

Designing The World

Class World

•Attributes?

•Methods?

Class Tardis

•Attributes?

•Methods?

James Tam

CAUTION: STOP READING AHEAD

• JT’s note: Normally you are supposed to read ahead so you
are prepared for class.

• In this case you will get more out of the design exercise if you
don’t read ahead and see the answer beforehand.

• That will force you to actually think about the problem
yourself (and hopefully get better at designing your own
programs).

• So for now skip reading the slides that follow this one up to
the one that has a corresponding ‘go’ symbol all over it.

• After we have completed the design exercise in class you
should go back and look through those slides (and the source
code).

Stop Stop

Stop Stop

Advanced Java concepts 9

James Tam

Tardis

• Attributes
- Current energy level

• Methods:
- Randomly generating movement:

•Some method must reduce the energy level as the Tardis moves
•The actual ‘movement’ from square to square in the grid will be a responsibility

of class World because the grid is an attribute of the world.

James Tam

• Attributes
- A 2D array that stores information about the ‘universe’

- Most array elements will be empty (null)

- One element will refer to the Tardis object

- The maximum number of rows and columns

- The current location (row/column) of the Tardis
•Needed to ‘move’ the Tardis from source cell to destination cell

- Theoretically the (row/col) could be (int, int) but because at most one
item can be returned from a method the location will be tracked as a
Location object (details in code):
•World.move()->Tardis.calculateCoordinates()

World

[0] [1]

[0] Null

[1] Null Null

Tardis

object
[0] [1]

[0] Null Null

[1] Null

Tardis

object

Advanced Java concepts 10

James Tam

World (2)

• Methods
- Constructor(s) to create the world

- Methods that modify the world (e.g., making sure each array element is
truly null: wipe()

- Displaying the world: display()

- Changing the contents of the objects in the world (e.g., editing the world
or moving objects): move()

James Tam

Manager

• It is responsible for things like determining how long the
simulation runs.

• For very simple programs it may be a part of the World class
(in this case it’s part of the Driver).

• But more complex programs (e.g., need to track many pieces
of information like multiple players, current scores etc. and
simulation rules) may require a separate Manager class.
- The Driver will then likely be responsible for instantiating a Manager

object and calling some method of the manager to start the simulation.

Advanced Java concepts 11

James Tam

END SECTION: Proceed Reading

• You can continue reading ahead to the slides that follow this
one.
- JT: Thank you for your understanding and co-operation.

GO!

GO!

GO!

GO!

James Tam

Source Code: Design Exercise

• Name of the folder containing the complete example :
9arrayReferences/doctor

Advanced Java concepts 12

James Tam

public class Tardis {

private int energy;

public Tardis(int startEnergy) {

energy = startEnergy;

}

// max row and column define the size of the world

public Location calculateCoordinates(int maxRow,int maxColumn){

Random aGenerator = new Random();

Location aLocation = new Location();

aLocation.setRow(aGenerator.nextInt(maxRow));

aLocation.setColumn(aGenerator.nextInt(maxColumn));

System.out.println("Tardis rematerializing at (r/c): " +

aLocation.getRow() + "/" + aLocation.getColumn());

energy--;

return(aLocation);

}

Class Tardis
0

1

2

3

e.g., = 4
e.g., = 7

0, 1, 2, 3

0, 1, 2, 3, 4, 5, 6

10 2 3 4 5

James Tam

Class Tardis (2)

public boolean hasEnergy()

{

if (energy > 0)

return(true);

else

return(false);

}

}

Advanced Java concepts 13

James Tam

Class Location

public class Location

{

private int row;

private int column;

public Location() {

row = 0;

column = 0;

}

public Location(int aRow, int aColumn) {

row = aRow;

column = aColumn;

}

James Tam

Class Location (2)

public int getColumn() {

return(column);

}

public int getRow() {

return(row);

}

public void setColumn(int aColumn) {

column = aColumn;

}

public void setRow(int aRow){

row = aRow;

}

}

Advanced Java concepts 14

James Tam

Class World: Attributes

public class World

{

private Tardis [][] grid; // Simulated world

private int maxRow; // Row capacity

private int maxColumn; // Column capacity

private Location tardisLocation; // (row/col) of Tardis

James Tam

Class World: Constructor

public World() {

final int START_ROW = 0;

final int START_COLUMN = 0;

Scanner in = new Scanner(System.in);

System.out.print("Max rows: ");

maxRow = in.nextInt();

System.out.print("Max columns: ");

maxColumn = in.nextInt();

grid = new Tardis[maxRow][maxColumn];

wipe(); // Empties the world

// Put the Doctor's Tardis here.

grid[START_ROW][START_COLUMN] = new Tardis(10);

tardisLocation = new Location(START_ROW,START_COLUMN);

display();

}

Advanced Java concepts 15

James Tam

Class World: Initialization

public void wipe()

{

int r;

int c;

for (r = 0; r < maxRow; r++)

{

for (c = 0; c < maxColumn; c++)

{

grid[r][c] = null;

}

}

}

[0] [1] [2]

[0]

[1]

r = 0, c = {0,1,2}

e.g., max = 2

e.g., max = 3

r = 1, c = {0,1,2}

null null null

null null null

James Tam

Class World: Display

public void display()

{

int r;

int c;

for (r = 0; r < maxRow; r++)

{

for (c = 0; c < maxColumn; c++)

{

if (grid[r][c] == null)

System.out.print(".");

else

System.out.print("T");

}

System.out.println();

}

}

0 1 2 3 4 5 6

0

1

2

3

e.g., = 4

e.g., = 7

Move cursor to display new
row on next line

Advanced Java concepts 16

James Tam

Movement

• To make it look like the Tardis has ‘moved’.

• Set the destination (row/column) to refer to the Tardis object.

• Set the source (row/column) to null.

[0] [1]

[0] Null

[1] Null Null

Tardis

object
[0] [1]

[0] Null Null

[1] Null

Tardis

object

Before move After move

James Tam

Class World: Move

public void move()

{

int currentRow = tardisLocation.getRow();

int currentColumn = tardisLocation.getColumn();

// Keep track of where the Tardis is currently located

int oldRow = currentRow;

int oldColumn = currentColumn;

// (cRow,cCol) location of Tardis in the world grid

tardisLocation =

grid[currentRow][currentColumn].calculateCoordinates

(maxRow,maxColumn);

Recall:
Tardis.calculateCoordinates()
randomly generates a new (row/column)
and returns a Location object

Advanced Java concepts 17

James Tam

Class World: Move (2)

// Update temporary values with current location

currentRow = tardisLocation.getRow();

currentColumn = tardisLocation.getColumn();

// Copy tardis from the old location to the new one.

grid[currentRow][currentColumn] = grid[oldRow][oldColumn];

// Check if tardis trying to move onto same square, don't

// 'wipe' if this is the case or tardis will be lost

// (Tardis object becomes a memory leak).

if ((currentRow == oldRow) &&

(currentColumn == oldColumn)) {

System.out.println("Same location");

}

else {

// ‘wipe’ tardis off old location

grid[oldRow][oldColumn] = null;

}

James Tam

Class World: Move (3)

System.out.println("Tardis re-materializing");

display();

}

Advanced Java concepts 18

James Tam

Class World: Querying Energy

public boolean energyRemains()

{

boolean isThereEnergy;

isThereEnergy =
grid[tardisLocation.getRow()][tardisLocation.getColumn()].

hasEnergy();

return(isThereEnergy);

}

James Tam

The Driver Class (Also The “Manager”)

public class Driver

{

public static void main(String [] args) {

Scanner in = new Scanner(System.in);

World aWorld = new World();

while (aWorld.energyRemains() == true)

{

aWorld.move();

System.out.println("Hit enter to continue");

in.nextLine(); }

System.out.println("\n<<<Tardis is out of energy,

end simulation>>> \n");

}

}

}

Advanced Java concepts 19

James Tam

After This Section You Should Now Know

•What is a wrapper class and the value provided by using them.

•How to pass arrays as parameters and return them from
methods

•Arrays of 'objects‘
- Why they are really arrays of references

- How to declare such an array, create and access elements

•How to create a simple simulation using an array of references

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 38

