
Advanced Java concepts 1

James Tam

Advanced Java Programming

Part 2: references and objects,
shallow vs. deep copies, automatic
garbage collection, parameter
passing

James Tam

Review: Previous Class

• What you have learned in your prerequisite class: some
variables directly contain data:
num1 = 12

num2 = 3.5

ch = 'a'

• What you may have learned your prerequisite class: some variables
‘refer’ to other variables.
list = []

list = [1,2,3]

Advanced Java concepts 2

James Tam

Review: This Class

• In Java when you use objects and arrays there are two things
involved:
- Reference

- Object (or array)

• Example with an object
Person charlie; // Creates reference to object

charlie = new Person("Sheen"); // Creates object

• Example with an array
double [] salaries; // Creates reference to array

salaries = new double[100]; // Creates array

• Normally a newly created reference contains a ‘null’ value
(meaning it refers to ‘nothing’).

• Roughly equivalent to:
-charlie = null;

James Tam

Review: This Class

• Why is it important to know that a reference and what the
reference refers two are separate?

• Name of the folder containing the online example:
4referencesVsObjects

Advanced Java concepts 3

James Tam

Addresses And References

• Real life metaphor: to determine the location that you need to
reach the ‘address’ must be stored (electronic, paper, human
memory)

• Think of the delivery address as something that is a ‘reference’
to the location that you wish to reach.
- Lose the reference (electronic, paper, memory) and you can’t ‘access’ (go

to) the desired location.

121 122 123

123

???

Reference =
123

James Tam

Addresses And References

• A reference to an array does not directly contain the contents
of the array
- Instead the reference contains the address (“refers to”) of the array

Advanced Java concepts 4

James Tam

• Variables are a ‘slot’ in memory that contains ‘one piece’ of
information.
num = 123

• Normally a location is accessed via the name of the variable.
- Note however that each location is also numbered!

- This is the address of a memory location.

Recap: Variables

Image: Curtesy of Rob Kremer

James Tam

References And Objects

•Name of the folder containing the complete example :
5referenceExamples

public class Person

{

private String name;

public Person() { name = "none"; }

public Person(String newName) { setName(newName);

}

public String getName() { return(name); }

public void setName(String newName) {

name = newName;

}

}

Advanced Java concepts 5

James Tam

References And Objects (2)

• In main():

Person bart;

Person lisa;

bart = new Person("bart");

System.out.println("Bart object name: " + bart.getName());

lisa = bart;

bart = new Person("lisa");

System.out.println("Bart object name: " + bart.getName());

System.out.println("Lisa object name: " + lisa.getName());

James Tam

References And Objects (3)

• What happened?
Person bart;

Person lisa;

bart = new Person("bart");

lisa = bart;

bart = new Person("lisa");

lisa

Address = 200

(Person object)

“lisa”

@ = 100

bart @ = 100@ = 200

Address = 100

(Person object)

“bart”

Advanced Java concepts 6

James Tam

References And Objects (4)

Person bart;

Person lisa;

bart = new Person("bart");

lisa = bart;

bart = new Person("lisa");

Note:

• The object and the reference to the object are separate e.g.,

‘bart’ originally referenced the ‘bart object’ later it referenced the

‘lisa object’

• The only way to access the object is through the reference.

• These same points applies for all references (arrays included)

Reference

Objects that

can be

referenced

James Tam

Shallow Copy Vs. Deep Copies

• Shallow copy (new term, concept should be review)

- New term:
•Copy the address from one reference into another reference
•Both references point to the same location in memory

A shortcut (‘link’ or ‘ln’

in UNIX) is similar to a

shallow copy. Multiple

things that refer to the

same item (document)

Advanced Java concepts 7

James Tam

Shallow Copy Vs. Deep Copies (2)

• Name of the folder containing the complete example:

6shallowVsDeep

mary

bob Age 1266

Person mary = new Person(21);
Person bob = new Person(12);
System.out.println(mary.age + " " +

bob.age);
mary = bob; // Shallow;
bob.age = 66;
System.out.println(mary.age + " " +

bob.age);

Age 21

Memory leak!

James Tam

New Term: Memory Leak

• When memory that was used by a program is no longer
needed but is not freed up for other programs.

Advanced Java concepts 8

James Tam

Shallow Copy Vs. Deep Copies (3)

Making an actual

physical copy is

similar to a deep copy.

• Deep copy (new term, concept should be review)

– New term, deep copy:
• It’s not the addresses stored in the references that’s copied

• Instead the data referred to by the references are copied

– After the copy each reference still refers to a different address (the
address refers to a data variable)

James Tam

Shallow Copy Vs. Deep Copies (4)

• Name of the folder containing the complete example :
6shallowVsDeep

// Mary still 66
bob = new Person(77);
mary.age = bob.age; // Deep
bob.age = 144;
System.out.println(mary.age + " " +

bob.age);

mary Age 66

bob Age 77144

77

Advanced Java concepts 9

James Tam

Automatic Garbage Collection Of Java
References

•Dynamically allocated memory is automatically freed up when
it is no longer referenced (Foo = a class) e.g.,
Foo f1 = new Foo();

Foo f2 = new Foo();

References Dynamic memory

f1(Address of a “Foo”)

f2 (Address of a “Foo”)

Object (Instance of a “Foo”)

Object (Instance of a “Foo”)

James Tam

Automatic Garbage Collection Of
Java References (2)

•Dynamically allocated memory is automatically freed up when
it is no longer referenced e.g.,
f2 = null;

References Dynamic memory

f1

f2

Object (A “Foo”)

Object (A “Foo”)

null

Advanced Java concepts 10

James Tam

Automatic Garbage Collection Of
Java References (3)

• Dynamically allocated memory is automatically freed up when
it is no longer referenced e.g.,
f2 = null;

- Recall that a null reference means that the reference refers to nothing,
it doesn’t contain an address).

References Dynamic memory

f1

f2

Object (A “Foo”)

Object (A “Foo”)

null

Image copyright unknown

James Tam

Caution: Not All Languages Provide Automatic
Garbage Collection!

•Some languages do not provide automatic garbage collection
(e.g., C, C++, Pascal).

•In this case dynamically allocated memory must be manually
freed up by the programmer.

•New term: Memory leak: memory that has been dynamically
allocated (such as via the Java ‘new’ keyword’) but has not
been freed up after it’s no longer needed.
- Memory leaks are a sign of poor programming style and can result in

significant slowdowns.

Advanced Java concepts 11

James Tam

Methods Of Parameter Passing

• New term: Pass by value
- The data stored (the “value” stored) in the parameter is copied

• New term: Pass by reference
- Pass the address of the parameter

- This allows references to the parameter inside the method (the method
has a “reference” to the original parameter).

James Tam

Passing Parameters As Value Parameters

method (p1);

method (<parameter type> <p1>)

{

}

Pass a copy

of the data

Advanced Java concepts 12

James Tam

Passing Parameters As Reference Parameters

method (p1);

method (<parameter type> <p1>)

{

}

Pass the address of the

parameter (refer to the

original parameter in the

method)

James Tam

Which Parameter Passing Mechanism Is Used?

Passed by value

•All ‘simple’ built in types:
- Integers (byte, short, int,
long)

- Floating point (float, double)

- Character (char)

- Boolean (boolean)

Pass by reference

•Objects

•Arrays

•(That is, anything that
consists of a reference and
the item referenced).

Advanced Java concepts 13

James Tam

Parameter Passing Example

• Name of the folder containing the complete example :
7parameters

James Tam

Class Person

public class Person {

private int age;

private String name;

public Person() {

age = -1;

name = "none";

}

public int getAge() {

return(age);

}

public String getName() {

return(name);

}

Advanced Java concepts 14

James Tam

Class Person (2)

public void setAge(int anAge) {

age = anAge;

}

public void setName(String aName) {

name = aName;

}

}

James Tam

Class ParameterExample

public class ParameterExample

{

public void modify(Person aPerson, int aNum)

{

aPerson.setName("Eric Cartman");

aPerson.setAge(10);

aNum = 888;

System.out.println("Person inside modify()");

System.out.println(aPerson.getName() + " " +

aPerson.getAge());

System.out.println("Number inside modify()");

System.out.println(aNum);

}

}

Modifies
parameters here

Advanced Java concepts 15

James Tam

The Driver Class

public class Driver

{

public static void main(String [] args)

{

int num = 13;

Person aPerson = new Person();

ParameterExample pe = new ParameterExample();

System.out.println("Person in main() before edit");

System.out.println(aPerson.getName() + " " +

aPerson.getAge());

System.out.println("Number inside main() before edit");

System.out.println(num);

System.out.println("----------");

James Tam

The Driver Class (2)

pe.modify(aPerson,num);

System.out.println("----------");

System.out.println("Person in main() after edit");

System.out.println(aPerson.getName() + " " +

aPerson.getAge());

System.out.println("Number inside main() after edit");

System.out.println(num);

}

}

Advanced Java concepts 16

James Tam

Previous Example: Analysis

• Why did the parameter that was passed by reference change
and the simple type (passed by value) did not?

James Tam

Pass By Reference In Java: Important Rules

• To change the original object (do this all/most of the time): Use mutator
methods when a reference is passed as a parameter.

public void modify(Person aPerson)

{

aPerson.setName("Eric Cartman");

aPerson.setAge(10);

aNum = 888;

}

• Do not: Use an assignment statement when the reference is passed as a
parameter.

public void modify(Person aPerson)

{

aPerson = new Person("Kenny"); //Creates a new object.

}

Advanced Java concepts 17

James Tam

Benefits Of Employing References

• References require a bit more complexity but provide several
benefits over directly working with objects and arrays.

• Benefit 1: Reference parameters allows changes to made
inside of methods.
- As you have just seen a reference contains the address of ‘something’

(object, array).

- As long as the address of the object or array is retained changes made
inside the method will persist after the method ends.

- Recall that functions or methods can only return zero or one things
(passing out of a function after it ends).

- Passing by reference (passing into the function just as it starts executing)
allows more than one change to persist after the function has ended:

fun(reference1,reference2,reference3…etc.)

James Tam

Benefits Of Employing References (2)

• Benefit 2: If an array or object is large then it’s more memory
efficient to pass a reference instead.

• Example:
- References are typically 32 or 64 bits in size.

- An array or object will almost always be larger.
char [] array1 = new char[1000000]; // 4 MB

class SocialNetworkUser
{

// attribute for images
// attribute for videos

}

Advanced Java concepts 18

James Tam

New Terminology/Definitions

• Shallow and deep copy

• Automatic garbage collection

• Memory leak

• Parameter passing: Pass by value, pass by reference

James Tam

After This Section You Should Now Know

•References
- How references and objects are related

- The difference between a deep vs. shallow copy

- What is the difference between comparing references vs. objects

- What is automatic garbage collection and how it’s related to the use of
references

•How the two methods of parameter passing work, what types
are passed using each mechanism

•What are the benefits of employing references

Advanced Java concepts 19

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 37

