Advanced Java Programming

Part 2: references and objects,
shallow vs. deep copies, automatic
garbage collection, parameter
passing

James Tam

Review: Previous Class

e What you have learned in your prerequisite class: some
variables directly contain data:

numl = 12
num2 = 3.5
ch = 'a’

¢ What you may have learned your prerequisite class: some variables
‘refer’ to other variables.
list = []
list [1,2,3]

James Tam

Advanced Java concepts

Review: This Class

¢ In Java when you use objects and arrays there are two things

involved:
- Reference
- Object (or array)

Example with an object
Person charlie; // Creates reference to object
charlie = new Person("Sheen"); // Creates object

Example with an array
double [] salaries; // Creates reference to array
salaries = new double[100]; // Creates array

Normally a newly created reference contains a ‘null’ value
(meaning it refers to ‘nothing’).

Roughly equivalent to:
-charlie = null;

James Tam

Review: This Class

e Why is it important to know that a reference and what the
reference refers two are separate?

¢ Name of the folder containing the online example:
4referencesVsObjects

James Tam

Advanced Java concepts

Addresses And References

* Real life metaphor: to determine the location that you need to
reach the ‘address’ must be stored (electronic, paper, human

memory)
o0 =I

* Think of the delivery address as something that is a ‘reference’
to the location that you wish to reach.
- Lose the reference (electronic, paper, memory) and you can’t ‘access’ (go

to) the desired location.
ﬁ James Tam

Addresses And References

e Areference to an array does not directly contain the contents
of the array
- Instead the reference contains the address (“refers to”) of the array

James Tam

Advanced Java concepts

Recap: Variables

e Variables are a ‘slot’ in memory that contains ‘one piece’ of

information.
num = 123

e Normally a location is accessed via the name of the variable.
- Note however that each location is also numbered!
- This is the address of a memory location.

Image: Curtesy of Rob Kremer James Tam

References And Objects

*Name of the folder containing the complete example :
SreferenceExamples

public class Person

{
private String name;
public Person() { name = "none"; }
public Person(String newName) { setName(newName);
}
public String getName() { return(name); }
public void setName(String newName) {
name = newName;
}
}

James Tam

Advanced Java concepts

e Inmain():

References And Objects (2)

Person bart;

Person lisa;

bart = new Person("bart");
System.out.println("Bart object name: " + bart.getName());

lisa = bart;

bart = new Person("lisa");

System.out.println("Bart object name:
System.out.println("Lisa object name:

Bart cbject name:

ocbject name: bart

" + bart.getName());
' + lisa.getName());

James Tam

References And Objects (3)

e What happened?

Person bart;

Person lisa;

bart = new Person("bart");

lisa = bart;

bart = new Person("lisa");

bart

lisa

Address = 200
(Person object)
“lisa”

@ = 200 e —

Address = 100
(Person object)
“bart”

@ = 100 _/

James Tam

Advanced Java concepts

References And Objects (4)

Person bart;
Person lisa;
bart = new Person("bart");
lisa = bart;
bart = new Person("lisa");

Note:
* The object and the reference to the object are separate e.g.,
‘bart’ originally referenced the ‘bart object’ later it referenced the
‘lisa object’
» The only way to access the object is through the reference.
Objects thtat These same points applies for all references (arrays included)

can be
referenced N
::, ‘

o
12 :w

2 123
7
Pm‘cﬂrnncn/@

James Tam

Shallow Copy Vs. Deep Copies

e Shallow copy (new term, concept should be review)

A shortcut (‘link’ or ‘1n’
~ 71in UNIX) is similar to a
s shallow copy. Multiple
s things that refer to the

lﬂll abu dhabi g same item (document)

-
i#] dubai places to see - Shortcut *
] dubai places to see

lﬂ__l)l sharjah places to see

-New term:
*Copy the address from one reference into another reference
*Both references point to the same location in memory

James Tam

Advanced Java concepts

Shallow Copy Vs. Deep Copies (2)

e Name of the folder containing the complete example:

6shallowVsDeep

Person mary = new Person(2l);
Person bob = new Person(12);

System.out.println(mary.

bob.age);

age + non

mary = bob; // Shallow;

bob.age = 66;

System.out.println(mary.

bob.age);

L ——

age + non

Age [21] |

bob l—'—

Age I 66 |

Memory leak!
o ©O

James Tam

New Term: Memory Leak

e When memory that was used by a program is no longer
needed but is not freed up for other programs.

James Tam

Advanced Java concepts

Shallow Copy Vs. Deep Copies (3)

* Deep copy (new term, concept should be review)

Making an actual
. physical copy is
] abu dhabi similar to a deep copy.
{#] dubai places to see - Shortcut e
’
B dubai places to see P
¥ sharjah places to see 7

L d

lﬂ-ﬂ sharjah places to see - Copy

— New term, deep copy:
* It’s not the addresses stored in the references that’s copied
* Instead the data referred to by the references are copied
— After the copy each reference still refers to a different address (the

address refers to a data variable)

Shallow Copy Vs. Deep Copies (4)

e Name of the folder containing the complete example :
6shallowVsDeep

// Mary still 66

bob = new Person(77);

mary.age = bob.age; // Deep

bob.age = 144; 77 144

System.out.println(mary.age + " " +
bob.age);

may[] Age <
Y

Advanced Java concepts

Automatic Garbage Collection Of Java
References

eDynamically allocated memory is automatically freed up when

itis no longer referenced (Foo = a class) e.g.,
Foo f1 = new Foo();
Foo f2 = new Foo();

References Dynamic memory

f1(Address of a “F00”) Object (Instance of a “Fo0”)

G

2 (Address of a “Fo0”) Object (Instance of a “F00”)

G

James Tam

Automatic Garbage Collection Of
Java References (2)

eDynamically allocated memory is automatically freed up when
it is no longer referenced e.g.,

f2 = null;
References Dynamic memory
f1 Object (A “Foo”)

f2 Object (A “F00”)

null

James Tam

Advanced Java concepts

Automatic Garbage Collection Of
Java References (3)

e Dynamically allocated memory is automatically freed up when
it is no longer referenced e.g.,
f2 = null;
- Recall that a null reference means that the reference refers to nothing,
it doesn’t contain an address).

References Dynamic memory

i Object (A “F00”)

f2 Object (A"Fo0") / image copyight i
—

null

James Tam

Caution: Not All Languages Provide Automatic
Garbage Collection!

eSome languages do not provide automatic garbage collection
(e.g., C, C++, Pascal).

e|n this case dynamically allocated memory must be manually
freed up by the programmer.

*New term: Memory leak: memory that has been dynamically
allocated (such as via the Java ‘new’ keyword’) but has not
been freed up after it’s no longer needed.

- Memory leaks are a sign of poor programming style and can result in
significant slowdowns.

James Tam

Advanced Java concepts

10

Methods Of Parameter Passing

e New term: Pass by value
- The data stored (the “value” stored) in the parameter is copied

e New term: Pass by reference
- Pass the address of the parameter

- This allows references to the parameter inside the method (the method
has a “reference” to the original parameter).

James Tam

Passing Parameters As Value Parameters

/
method (p1);]

Pass a copy
of the data

method (<parameter type> <p1p)

{
}

James Tam

Advanced Java concepts

11

Passing Parameters As Reference Parameters

/N
Imethod ((p1));] Pass the address of the
_/

parameter (refer to the
original parameter in the

method)
7\
method (<parameter type> <plp)
{
}

James Tam

Which Parameter Passing Mechanism Is Used?

Passed by value Pass by reference
e All ‘simple’ built in types: *Objects
- Integers (byte, short, int, eArrays
long)
- Floating point (float, double) ®(Thatis, anything that
- Character (char) consists of a reference and
-Boolean (boolean) the item referenced).

James Tam

Advanced Java concepts

12

Parameter Passing Example

¢ Name of the folder containing the complete example :
7parameters

James Tam

Class Person

public class Person {
private int age;
private String name;

public Person() {
age = -1;
name = "none";

public int getAge() {
return(age);

public String getName() {

return(name);

James Tam

Advanced Java concepts

13

Class Person (2)

public void setAge(int anAge) {
age = anAge;

public void setName(String aName) {
name = aName;

James Tam

Class ParameterExample

public class ParameterExample

{

public void modify(Person aPerson, int aNum)

{ o Modifies
____________ *x__\parameters here

N\

/’ aPerson.setName("Eric Cartman");

' aPerson.setAge(10); .-

System.out.println("Person inside modify()");

System.out.println(aPerson.getName() + +
aPerson.getAge());
System.out.println("Number inside modify()");

System.out.println(aNum);

James Tam

Advanced Java concepts

14

The Driver Class

public class Driver

{

public static void main(String

{

int num = 13;

Person aPerson = new Person();
ParametertExample pe = new ParameterExample();

System.out.println("Person
System.out.println(aPerson

aPerson
System.out.println("Number

[] args)

in main() before edit");

+

.getName() +

.getAge());
inside main() before edit");

System.out.println(num);
System.out.println("---

The Driver Class (2)

pe.modify(aPerson,num);
System.out.println("

iI_J.E i'.j.E‘ Il'l_l:n;ji f}r ‘]
‘artman 10

System.out.println("Person in main() after edit");
System.out.println(aPerson.getName() + " " +
aPerson.getAge());

System.out.println("Number inside main() after edit");

System.out.println(num);

Person in main()

} Eric Cartman 10
Number inside main ()
} 13

Advanced Java concepts

Previous Example: Analysis

e Why did the parameter that was passed by reference change
and the simple type (passed by value) did not?

James Tam

Pass By Reference In Java: Important Rules

¢ To change the original object (do this all/most of the time): Use mutator
methods when a reference is passed as a parameter.

public void modify(Person aPerson)

{
aPerson.setName("Eric Cartman");
aPerson.setAge(10);
aNum = 888;
}
o not: Use an assignment statement when the reference is passe

public void

{

(Person aPerson)

aPerson = ne son("Kenny Creates a new object.

James Tam

Advanced Java concepts

16

Benefits Of Employing References

» References require a bit more complexity but provide several
benefits over directly working with objects and arrays.

* Benefit 1: Reference parameters allows changes to made

inside of methods.

- As you have just seen a reference contains the address of ‘something’
(object, array).

- As long as the address of the object or array is retained changes made
inside the method will persist after the method ends.

- Recall that functions or methods can only return zero or one things
(passing out of a function after it ends).

- Passing by reference (passing into the function just as it starts executing)
allows more than one change to persist after the function has ended:

fun(referencel,reference2,reference3..etc.)

James Tam

Benefits Of Employing References (2)

e Benefit 2: If an array or object is large then it’'s more memory
efficient to pass a reference instead.

e Example:
- References are typically 32 or 64 bits in size.

- An array or object will almost always be larger.
char [] arrayl = new char[1l000000]; // 4 MB

class SocialNetworkUser

{

// attribute for images
// attribute for videos

James Tam

Advanced Java concepts

17

New Terminology/Definitions

e Shallow and deep copy
e Automatic garbage collection
e Memory leak

e Parameter passing: Pass by value, pass by reference

James Tam

After This Section You Should Now Know

eReferences
- How references and objects are related
- The difference between a deep vs. shallow copy
- What is the difference between comparing references vs. objects

- What is automatic garbage collection and how it’s related to the use of
references

eHow the two methods of parameter passing work, what types
are passed using each mechanism

*\What are the benefits of employing references

James Tam

Advanced Java concepts

18

Copyright Notification

e “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

James Tam

Advanced Java concepts

19

