
4/7/2021

Design patterns 1

Introduction To Design Patterns

You will learn about design
techniques that have been
successfully applied to different
scenarios.

James Tam

What Is A Design Pattern?

• A general and reusable solution to a commonly occurring
problem in the design of software.

• IT IS a template for how to solve a problem that has been used
in many different situations.

• IT IS NOT a finished algorithm that can be directly translated
into program code.

• The various Object-Oriented design patterns show interactions
between classes and objects without being tied to the specific
the program code that implements the pattern (language
independent)
– e.g., Information hiding, inheritance etc.

4/7/2021

Design patterns 2

James Tam

Some General Resources (Last Visited 2021)

• Microsoft:
– https://docs.microsoft.com/en-us/archive/msdn-

magazine/2001/july/design-patterns-solidify-your-csharp-application-
architecture-with-design-patterns

• Oracle
– https://www.oracle.com/java/technologies/design-patterns-

catalog.html

• The original “Gang of Four” resource
– https://springframework.guru/gang-of-four-design-patterns/

• Another book authored by Gamma et al.
– https://www.amazon.ca/Design-Patterns-Elements-Reusable-Object-

Oriented/dp/0201633612

James Tam

Origin Of Design Patterns

• The foundation for design patterns come from the original
patterns specified in the book “Design Patterns: Elements of

Reusable Object-Oriented Software”

• Authors: “The gang of four” (Erich Gamma, Richard Helm,
Ralph Johnson and John Vlissides).

• Although examples of the patterns were provided in the C++
and SmallTalk programming languages the patterns can be
applied to any Object-Oriented language.

https://docs.microsoft.com/en-us/archive/msdn-magazine/2001/july/design-patterns-solidify-your-csharp-application-architecture-with-design-patterns
https://www.oracle.com/java/technologies/design-patterns-catalog.html
https://springframework.guru/gang-of-four-design-patterns/
https://www.amazon.ca/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612

4/7/2021

Design patterns 3

James Tam

The Model-View-Controller Pattern1

• Sometimes the same data may have to be accessed under
different contexts e.g., powerful desktop, web, mobile device.

• Each context may require a different interface (e.g., web page
on a mobile device, software on a computer).

• Even the context of a single program running on a single device
there may be a desire to see different views of the data:
– Financial analysts may want to see details (actual numbers in a

spreadsheet and/or financial statement)

– Shareholders or management may focus on overviews (graphical
representations)

1 Some additional sources that describe the Model-View Controller pattern (last visited 2021):

I. Sun Microsystems, now via the Oracle link (last visited 2021):

• https://www.oracle.com/java/technologies/design-patterns-catalog.html

II. Microsoft:

• http://msdn.microsoft.com/en-us/library/ms978748.aspx

James Tam

The Model-View-Controller Pattern1

• With this pattern, different parts are separate and
independent:
– Model: The data (database, text file):

– View: How the data appears or the perspective under which it is viewed
(graph, numerical)

– Controller: How the data can be interacted with (GUI, command line).

Model

•State

(data)

View

•Display of
data

• Interface

Controller

• Event handling

State

change

State query

Change

notification

User

interaction

View

selection

https://www.oracle.com/java/technologies/design-patterns-catalog.html

4/7/2021

Design patterns 4

James Tam

Model-View-Controller Pattern (2)

• Implementing different parts that are decoupled (minimized
dependencies) provides many benefits:
– One part may be changed independent of the other parts e.g., updates

to the interface can have minimal impact on the data.

– It’s seldom that one person will have a deep understanding of all parts
(e.g., knowledge of Accounting to create the financial statements vs.
knowledge of web design to create the web interface).

– Different people with different areas of expertise can work on the
different parts.

– One version of the data can be created and maintained and as needed
different ways of interacting and viewing data can be developed.

James Tam

The Strategy Pattern

• The algorithm is determined at run time.

Chess

algorithms

(Difficulty

levels)

Beginner Intermediate Advanced

Computer fighting

style: sparring

simulation

Hard-

style

Muay

Thai Soft style

Images: colourbox.com

4/7/2021

Design patterns 5

James Tam

The Strategy Pattern (2)

• One object contains a reference to another object.

• The second object determines the algorithm to execute.

James Tam

The Strategy Algorithm: Example

Name of the folder containing the complete example:
designPatterns/strategy

public class Driver {
public static void main (String [] args) {

MyContainer aContainer = null;

// First algorithm
aContainer = new MyContainer (new AddAlgorithm());
System.out.println(aContainer.executeAlgorithm(2,5));

// Second algorithm
aContainer = new MyContainer (new MultiplyAlgorithm());
System.out.println(aContainer.executeAlgorithm(2,5));

}
}

4/7/2021

Design patterns 6

James Tam

The Strategy Algorithm: An Example (2)

public class MyContainer

{

private Algorithm anAlgorithm;

public MyContainer (Algorithm anAlgorithm)

{

this.anAlgorithm = anAlgorithm;

}

public int executeAlgorithm (int x, int y)

{

return(anAlgorithm.execute(x,y));

}

}

James Tam

The Strategy Algorithm: An Example (3)

public interface Algorithm {
public int execute (int x, int y);

}

public class AddAlgorithm implements Algorithm {
public int execute (int x, int y) {

return (x+y);
}

}

public class MultiplyAlgorithm implements Algorithm {
public int execute (int x, int y) {

return (x*y);
}

}

4/7/2021

Design patterns 7

James Tam

Advantages Of The Strategy Pattern

• It decouples the context/container from the algorithm used by
the context/container.
– For the container it may allow the context/container to easily substitute

additional algorithms.

• ‘Expansion packs’

– For the algorithm, the algorithm may be used in a number of different
contexts/containers (e.g., sorting algorithms).

James Tam

Side Note: Static Attributes

• Static attributes of a class are initialized when the Java virtual
machine (“java”) loads a class into memory.

• This must be done before any of the methods of the class can
be called (even the constructor).

• Name of the folder containing the complete example:

designPatterns/static

4/7/2021

Design patterns 8

James Tam

Static Attributes: Driver Class

public class Driver

{

public static void main (String [] args)

{

Foo aFoo = new Foo();

}

}

Static Attributes: Class Foo & Bar

public class Foo

{

private static Bar aBar =

new Bar();

public Foo()

{
System.out.println(">>>
Trace only: constructor
Foo() <<<");

}

}

public class Bar

{

public Bar()

{

System.out.println(">>>

Trace only: constructor

Bar() <<<");

}

}

4/7/2021

Design patterns 9

James Tam

The Singleton Pattern

• Singleton class: there is only one instance of the class (one
object).

• That object provides a common set of operations for the rest
of the program and globally accessible (variable) data.

• It is not the same as a purely static class.
– Static methods but no variable attributes.

• The Singleton pattern is enforced by making the constructor
private.

• Example singleton class: Random number generator.
– For testing/debugging it is desirable to generate the same sequence of

random numbers.

James Tam

Singleton Example

• Name of the folder containing the complete example:

designPatterns/singleton

4/7/2021

Design patterns 10

James Tam

Singleton: Driver

public class DriverSingleRandom

{

public static void main(String [] args)

{

SingleRandom aSingleRandom = SingleRandom.getInstance();

aSingleRandom.setSeed(1);

for (int i = 0; i < 10; i++)

System.out.println(i + ": " +

aSingleRandom.nextInt());

System.out.println();

}

}

James Tam

Class SingleRandom

public class SingleRandom
{

private Random generator;
private static SingleRandom instance = new SingleRandom();

private SingleRandom()
{

System.out.println(">>> Trace only: this.SingleRandom()
<<<");

generator = new Random();
}

public static SingleRandom getInstance()
{

System.out.println(">>> Trace only:
SingleRandom.getInstance() <<<");

return(instance);
}

1st

2nd

3rd

4/7/2021

Design patterns 11

James Tam

Class SingleRandom (2)

public void setSeed(int seed)
{

System.out.println(">>> Trace only: ref.setSeed() <<<");
generator.setSeed(seed);

}

public int nextInt()
{

System.out.println(">>> Trace only: ref.nextInt() <<<");
return (generator.nextInt());

}

}

James Tam

Discussions/Resources: Singleton Pattern

• (Last visited 2021):
– http://msdn.microsoft.com/en-us/library/ee817670.aspx

http://msdn.microsoft.com/en-us/library/ee817670.aspx

4/7/2021

Design patterns 12

James Tam

You Should Now Know

• What is a design pattern

• How the three example design patterns work

