
3/26/2021

Graphical user interfaces in Java 1

An Introduction To Graphical
User Interfaces

Part 2: You will learn how to arrange or
organize graphical controls within a GUI
manually and using a layout manager
class.

How To Handle The Layout Of Components

1. Manually set the coordinates yourself

2. Use one of Java’s built-in layout manager classes

3/26/2021

Graphical user interfaces in Java 2

How To Handle The Layout Of Components

1. Manually set the coordinates yourself

2. Use one of Java’s built-in layout manager classes

Layout Is Based On Spatial (X,Y) Coordinates

Width e.g., w = 300

Height e.g., h = 200

e.g. MyFrame my =new MyFrame();

my.setSize(300,200);

3/26/2021

Graphical user interfaces in Java 3

Layout Is Based On Spatial Coordinates

x = 0 x = 300

y = 0

y = 200

Coordinates Of Components: Relative To
The Container

x = 50

y = 50

x = 100

y = 100

Width = 100, Height = 20

Width = 100, Height = 20

x = 0

y = 0

3/26/2021

Graphical user interfaces in Java 4

Pitfall 2: Invisible Component

• Don’t forget that coordinates (0,0) are covered by the title bar
of the frame.

• Components added at this location may be partially or totally
hidden by the title bar.

A Example With Manual Layout

•Name of the folder containing the complete example:
4manualLayout

3/26/2021

Graphical user interfaces in Java 5

An Example With Manual Layout:
The Driver Class

import javax.swing.JButton;

import javax.swing.JLabel;

import javax.swing.JFrame;

public class Driver {

public static final int WIDTH_FRAME = 300;

public static final int HEIGHT_FRAME = 300;

public static final int X_COORD_BUTTON = 100;

public static final int Y_COORD_BUTTON = 100;

public static final int WIDTH_BUTTON = 100;

public static final int HEIGHT_BUTTON = 20;

public static final int X_COORD_LABEL = 50;

public static final int Y_COORD_LABEL = 50;

public static final int WIDTH_LABEL = 100;

public static final int HEIGHT_LABEL = 20;

An Example With Manual Layout:
The Driver Class (2)

public static void main(String [] args) {
JFrame aFrame = new JFrame();
aFrame.setLayout(null);
aFrame.setSize(WIDTH_FRAME,HEIGHT_FRAME);
JButton aButton = new JButton("Press me.");
aButton.setBounds(X_COORD_BUTTON,

Y_COORD_BUTTON,
WIDTH_BUTTON,
HEIGHT_BUTTON);

JLabel aLabel = new JLabel("Simple label");
aLabel.setBounds(X_COORD_LABEL,

Y_COORD_LABEL,
WIDTH_LABEL,
HEIGHT_LABEL);

aFrame.add(aButton);
aFrame.add(aLabel);
aFrame.setVisible(true);

}
}

• To manually set the
layout you must
make the layout
manager (object)
null

• Don’t use an
automatic layout
manager (layout is
manually specified)

3/26/2021

Graphical user interfaces in Java 6

How To Handle The Layout Of Components

1. Manually set the coordinates yourself

2. Use one of Java’s built-in layout manager classes

Java Layout Classes

•There are many implementations (this diagram only includes
the original classes that were implemented by Sun).

LayoutManager

BorderLayout FlowLayout GridLayoutCardLayout GridBagLayout

3/26/2021

Graphical user interfaces in Java 7

BorderLayout (“Compass Directions”)

From Java: AWT Reference p. 256

CardLayout (“Tab-Like”)

From Java: AWT Reference p. 264

3/26/2021

Graphical user interfaces in Java 8

FlowLayout (Adapts To Resizing “Web-Like”)

From Java: AWT Reference p. 253

GridLayout

From Java: AWT Reference p. 260

3/26/2021

Graphical user interfaces in Java 9

GridBagLayout

From Java: AWT Reference p. 269

Implementing A GUI When Using The
GridBagLayout

• Use graph paper or draw out a table.

Label1

Button1

0 1 2

0

1

2

x coordinates in the grid

y

coordinates

in the grid

3/26/2021

Graphical user interfaces in Java 10

Implementing A GUI When Using The
GridBagLayout

• Use graph paper or draw out a table.

Label1

Button1

0 1 2

0

1

2

x coordinates in the grid

y

coordinates

in the grid

GridBagConstraints

•Goes with the GridBagLayout class.

•Because the GridBagLayout doesn’t know ‘how’ to display
components you also need GridBagConstraints to
constrain things (determine the layout).

•GridBagConstraints indicates how components should be
displayed for a particular GridBagLayout.

•For more complete information see:
–https://docs.oracle.com/en/java/javase/16/docs/api/java.desktop/java/awt/clas
s-use/GridBagConstraints.html

https://docs.oracle.com/en/java/javase/16/docs/api/java.desktop/java/awt/class-use/GridBagConstraints.html

3/26/2021

Graphical user interfaces in Java 11

Some Important Parts Of The
GridBagConstraints Class

public class GridBagConstraints

{

// Used in conjunction with the constants below to determine
// the resize policy of the component

public int fill;

// Apply only if there is available space.

// Determine in which direction (if any) that the component

// expands to fill the space.

public final static int NONE;

public final static int BOTH;

public final static int HORIZONTAL;

public final static int VERTICAL;

GridBagContraints: Fill Values

Horizontal Vertical None

3/26/2021

Graphical user interfaces in Java 12

Some Important Parts Of The
GridBagConstraints Class (2)

// Position within the grid

public int gridx;

public int gridy;

// Number of grid squares occupied by a component

public int gridwidth;

public int gridheight;

Some Important Parts Of The
GridBagConstraints Class (3)

// Used in conjunction with the constants below to determine
// that the component drift if the space available is larger
// than the component.

public int anchor;

// Only if the component is smaller than the available space.

// Determine the anchor direction

public final static int CENTER;

public final static int EAST;

public final static int NORTH;

public final static int NORTHEAST;

public final static int NORTHWEST;

public final static int SOUTH;

public final static int SOUTHEAST;

public final static int SOUTHWEST;

public final static int WEST;

3/26/2021

Graphical user interfaces in Java 13

Some Important Parts Of The
GridBagConstraints Class (4)

// With a particular ‘cell’ in the grid this attribute

// specifies the amount of padding around the component

// to separate it from other components.

// Usage:

// insets = new Insets(<top>,<left>,<bottom>,<right>);

// Example (Set top, left, bottom, and right)

// insets = new Insets(0, 0, 0, 0); // No padding (default)

public insets;

Insets = 0: no padding Insets = 10: many spaces/padding

An Example Using The GridBagLayout

•Name of the folder containing the complete example: :

5gridbaglayout

3/26/2021

Graphical user interfaces in Java 14

An Example Using The GridBagLayout:
The Driver Class

public class Driver

{

public static final int WIDTH = 400;

public static final int HEIGHT = 300;

public static void main(String [] args)

{

MyFrame aFrame = new MyFrame ();

aFrame.setSize(WIDTH,HEIGHT);

aFrame.setVisible(true);

}

}

An Example Using The GridBagLayout:
Class MyFrame

public class MyFrame extends JFrame {

private JButton left;

private JButton right;

private JLabel aLabel;

private GridBagLayout aLayout;

GridBagConstraints aConstraint;

public MyFrame() {

MyWindowListener aWindowListener = new MyWindowListener();

addWindowListener(aWindowListener);

aConstraint = new GridBagConstraints();

Scanner in = new Scanner(System.in);

System.out.print("Buffer size to pad the grid: ");

int padding = in.nextInt();

3/26/2021

Graphical user interfaces in Java 15

An Example Using The GridBagLayout:
Class MyFrame (2)

left = new JButton("L: Press me");

right = new JButton("R: Press me");

MyButtonListener aButtonListener = new MyButtonListener();

left.addActionListener (aButtonListener);

right.addActionListener (aButtonListener);

aLabel = new JLabel("Simple label");

aConstraint.insets = new

Insets(padding,padding,padding,padding);

aLayout = new GridBagLayout();

setLayout(aLayout); // Calling method of super class.

addWidget(aLabel, 0, 0, 1, 1);

addWidget(left, 0, 1, 1, 1);

addWidget(right, 1, 1, 1, 1);

}

An Example Using The GridBagLayout:
Class MyFrame (3)

public void addWidget(Component widget,
int x,
int y,
int w,
int h)

{ // aConstraint: refers to instance of
// GridBagConstraints
aConstraint.gridx = x;
aConstraint.gridy = y;
aConstraint.gridwidth = w;
aConstraint.gridheight = h;
aLayout.setConstraints(widget, aConstraint);
add(widget); // Calling method of super class.

}
} // End of definition for class MyFrame

3/26/2021

Graphical user interfaces in Java 16

Advanced Uses Of GridBagLayout

Button gridx

(col)

gridy

(row)

grid-

width

grid-

height

One 0 0 1 1

Two 1 0 1 1

Three 2 0 1 1

Four 0 1 2 1

Five 2 1 1 2

Six 0 2 1 1

Seven 1 2 1 1

From Java: AWT Reference p. 269

Layout Of GUI Components

• JT’s note (and opinion): learning how to layout GUI
components manually will teach you “how things work”.
– That’s because you have to handle many details yourself (either

manually or by using a layout class).

– Except when writing small programs with a simple GUI (assignment)
doing things manually is just too much of a hassle.

• The programmer focuses on the wrong details (how do I get the
programming language to ‘do stuff’ as opposed to how do I create a
GUI that is ‘user-friendly’).

– In other cases (‘real life programs’) an IDE is used.

– Some examples:

• Sun’s NetBeans IDE:
http://docs.oracle.com/javase/tutorial/uiswing/learn/index.html

• IBM’s Eclipse IDE:

http://www.ibm.com/developerworks/opensource/library/os-ecvisual/

http://docs.oracle.com/javase/tutorial/uiswing/learn/index.html
http://www.ibm.com/developerworks/opensource/library/os-ecvisual/

3/26/2021

Graphical user interfaces in Java 17

James Tam

After This Section You Now Know

• How to manually layout graphical components within a GUI (as
specified by the (x, y) pixel coordinates.

• How to use the layout manager class GridBagLayout in
conjunction with GridBagConstraints to specify layout on
a grid and to automated update layout when the container is
resized.

James Tam

Copyright Notice

• Unless otherwise specfied, all images were produced by the
author (James Tam).

