
Repetition using loops 1

James Tam

CPSC 217,
Loops In Python: Part 2

In this section of notes you will learn
how to rerun parts of your program
without duplicating instructions.

James Tam

Common Mistake #1

•Mixing up branches (IF and variations) vs. loops (while)

•Related (both employ a Boolean expression) but they are not
identical

•Branches
- General principle: If the Boolean evaluates to true then execute a

statement or statements (once)

- Example: display a popup message if the number of typographical errors
exceeds a cutoff.

•Loops
- General principle: As long as (or while) the Boolean evaluates to true then

execute a statement or statements (multiple times)

- Example: While there are documents in a folder that the program hasn’t
printed then continue to open another document and print it.

Repetition using loops 2

James Tam

Common Mistake #1: Example

•Program name: 11branchVsLoop.py
- Learning objective: knowing the difference between a branching vs. an

iterative (solution).

age = int(input("Age positive only: "))
if (age < 0):

age = int(input("Age positive only: "))
print("Branch:", age)

age = int(input("Age positive only: "))
while (age < 0):

age = int(input("Age positive only: "))
print("Loop:", age)

Vs.

James Tam

Nesting

•Recall: Nested branches (one inside the other)
- Nested branches:
If (Boolean):

If (Boolean):

...

•Branches and loops (for, while) can be nested within each
other
Scenario 1 # Scenario 2

loop (Boolean): if (Boolean):

if (Boolean): loop (Boolean):

... ...

Scenario 3

loop (Boolean):

loop (Boolean):

...

Repetition using loops 3

James Tam

Recognizing When Looping & Nesting Is
Needed

•Scenario 1: As long some condition is met a question will be
asked (branch = question).
- Example: As the question is asked if the answer is invalid then an error

message will be displayed.
•Example: While the user entered an invalid value for age (too high or too low)

then if the age is too low an error message will be displayed.
•Type of nesting: an IF-branch nested inside of a loop
loop (Boolean):

if (Boolean):

...

James Tam

IF Nested Inside A While

•Program name: 12nestingIFinsideWHILE.py
- Learning objective: checking a condition during a repetitive process.

age = - 1

MIN_AGE = 1

MAX_AGE = 118

age = int(input("How old are you (1-118): "))

while ((age < MIN_AGE) or (age > MAX_AGE)):

if (age < MIN_AGE):

print("Age cannot be lower than", MIN_AGE, "years")

#(Age for too high also possible (similar)

age = int(input("How old are you (1-118): "))

print("Age=", age, "is age-okay")

Repetition using loops 4

James Tam

Recognizing When Looping & Nesting Is
Needed

•Scenario 2: If a question (Boolean expression for a branch)
answers true then check if a process should be repeated.
- Example: If the user specified the country of residence as Canada then

repeatedly prompt for the province of residence as long as the province
is not valid.

- Type of nesting: a loop nested inside of an IF-branch
If (Boolean):

loop ():
...

James Tam

While Nested Inside An IF

•Program name: 13nestingWHILEinsideIF.py
- A repetitive process that occurs given a condition has been met

country = ""

province = ""

VALID_PROVINCES = "BC, AB, SK, MB, ON, PQ,NL, NB, NS, PEI"

country = input("What is your country of citizenship: ")

if (country == "Canada"):

province = input("What is your province of citizenship: ")

while province not in (VALID_PROVINCES):

print("Valid provinces: %s" %(VALID_PROVINCES))

province = input("What is your province of citizenship: ")

print("Country:", country, ", Province:",province)

Repetition using loops 5

James Tam

Recognizing When Looping & Nesting Is
Needed

•Scenario 3: While one process is repeated, repeat another
process.
- More specifically: for each step in the first process repeat the second

process from start to end

- Example: While the user indicates that he/she wants to calculate another
tax return prompt the user for income, while the income is invalid
repeatedly prompt for income.

- Type of nesting: a loop nested inside of an another loop
Loop():

Loop():
...

James Tam

Pseudo Code

•A high level solution or algorithm that is not specified in a
programming language.

•Instead English-like statements are used.
- “A high-level description of the actions of a program or algorithm, using a

mixture of English and informal programming language syntax” – Python

for Everyone (Horstmann, Necaise)

•Benefits: it allows the programmer to focus on the solution
without spending a lot time worrying about details such as
syntax.

Repetition using loops 6

James Tam

Nested Loop: Example Process In Pseudo Code

Do While (user wants to calculate another return)

Do While (salary invalid)

Get salary information

Do While (investment income invalid)

Get investment income

…

Each time we

have a tax

return to

calculate

Complete

each of these

steps from

start to end

For each client as

long as salary

invalid repeatedly

prompt

James Tam

While Nested Inside Another While

•Program name: 14nestingWHILEinsideWHILE.py
- Learning objective: a repetitive process that repeats from start to end each

time another repetitive process occurs.

MIN_INCOME = 0

runAgain = "yes"

while (runAgain == "yes"):

print("CALCULATING A TAX RETURN")

income = -1

while (income < MIN_INCOME):

income = int(input("Income $"))

runAgain = input("To calculate another return enter 'yes': ")

Repetition using loops 7

James Tam

Analyzing Another Nested Loop

•One loop executes inside of another loop(s).
•Example structure:
Outer loop (runs n times)

Inner loop (runs m times)
Body of inner loop (runs n x m times)

• Program name: 15nested_nested_loop_repeats_start_end.py
- Learning objective: for each number in a sequence a second sequence

counts from start to end.

i = 1
while (i <= 2):

j = 1
while (j <= 3):

print("i = ", i, " j = ", j)
j = j + 1

i = i + 1
print("Done!")

James Tam

Practice Example #2: Nesting

1. Write a program that will count out all the numbers from one
to six.

2. For each of the numbers in this sequence the program will
determine if the current count (1 – 6) is odd or even.

a) The program display the value of the current count as well an indication
whether it is odd or even.

• Which Step (#1 or #2) should be completed first?

Repetition using loops 8

James Tam

Step #1 Completed: Now What?

•For each number in the sequence determine if it is odd or
even.

•This can be done with the modulo (remainder) operator: %
- An even number modulo 2 equals zero (2, 4, 6 etc. even divide into 2 and

yield a remainder or modulo of zero).

-if (counter % 2 == 0): # Even

- An odd number modulo 2 does not equal zero (1, 3, 5, etc.)

•Pseudo code visualization of the problem
Loop to count from 1 to 6

Determine if number is odd/even and display message
End Loop
- Determining whether a number is odd/even is a part of counting through

the sequence from 1 – 6, checking odd/even is nested within the loop

James Tam

The Break Instruction

•It is used to terminate the repetition of a loop which is separate
from the main Boolean expression (it’s another, separate
Boolean expression).

•General structure:
for (Condition 1): while (Condition 1):

if (Condition 2): if (Condition 2):

break break

•Program name: 16break_illustration_only_avoid.py
- Learning objective: early termination of a loop occurring any time in the loop body

(most for illustration purposes).
str1 = input("Enter a series of lower case alphabetic characters: ")

for temp in str1:

if ((temp < "a") or (temp > "z")):

break

print(temp)

print("Done")

Q: What if the user
just typed ‘abc’ and hit
enter?

Repetition using loops 9

James Tam

The Break Should Be Rarely Used

•Adding an extra exit point in a loop (aside from the Boolean
expression in the while loop) may make it harder to trace
execution (leads to ‘spaghetti’ programming).

(while)

Boolean met?

Instruction

Y

N

…rest of program

(If)

Boolean met?

Y

N

JT: While adding a
single break may not
always result in
‘spaghetti’ it’s the
beginning of a bad
habit that may result
in difficult to trace
programs

James Tam

An Alternate To Using A ‘Break’

•NO: Instead of an ‘if’ and ‘break’ inside the body of the loop
while (BE1):

if (BE2):

break

• YES: Add the second Boolean expression as part of the
loop’s main Boolean expression

while ((BE1) and not (BE2)):

Repetition using loops 10

James Tam

Another Alternative To Using A ‘Break’

•YES: If the multiple Boolean expressions become too complex
consider using a ‘flag’

flag = True

while (flag == True):

if (BE1):

flag = False

if (BE2)

flag = False

Otherwise the flag remains set to true

BE = A Boolean expression

•Both of these approaches (YES #1 & 2)still provide the
advantage of a single exit point from the loop.

James Tam

Alternative To Using Break

•Third, complete and executable example:
17_break_alternative.py
- A fully working example for you to look through on your own if you need

to see a fully working alternative to using a break.

Repetition using loops 11

James Tam

Infinite Loops

•Infinite loops never end (the stopping condition is never met).

•They can be caused by logical errors:
- The loop control is never updated (Example 1 – below).

- The updating of the loop control never brings it closer to the stopping
condition (Example 2 – next slide).

•Program name: 18infinite1.py
- Learning objective: a loop that never ends.

i = 1

while (i <= 10):

print("i = ", i)

i = i + 1

To stop a program with an infinite loop in Unix simultaneously press the <ctrl> and the <c> keys

James Tam

Infinite Loops (2)

•Program name: 19infinite2.py
- Learning objective: a loop that never ends.

i = 10

while (i > 0):

print("i = ", i)

i = i + 1

print("Done!")

To stop a program with an infinite loop in Unix simultaneously press the <ctrl> and the <c> keys

Repetition using loops 12

James Tam

Testing Loops

•Make sure that the loop executes the proper number of times.

•Test conditions:
1) Loop does not run

2) Loop runs exactly once

3) Loop runs exactly ‘n’ times

James Tam

Testing Loops: An Example

Program name: 20testing.py
- Learning objective: minimum tests for a loop that steps through a

sequence.

sum = 0

i = 1

last = 0

last = int(input("Enter the last number in the sequence to sum : "))

while (i <= last):

sum = sum + i

print("i = ", i)

i = i + 1

print("sum =", sum)

Repetition using loops 13

James Tam

Extra Practice #3

•Write a loop that will continue repeating if the user enters a
value that is negative.

•Write a program that will prompt the user for number and an
exponent. Using a loop the program will calculate the value of
the number raised to the exponent.
- To keep it simple you can limit the program to non-negative exponents.

James Tam

After This Section You Should Now Know

•How/when to employ nested branches and loops
- How to trace their execution

•The break instruction, why it should be avoided and
alternatives to its use

•What is an infinite loop

•How to test loops

Repetition using loops 14

James Tam

Copyright Notification

•“Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

slide 29

