CPSC 217,
Loops In Python: Part 2

In this section of notes you will learn
how to rerun parts of your program
without duplicating instructions.

James Tam

Common Mistake #1

eMixing up branches (IF and variations) vs. loops (while)

eRelated (both employ a Boolean expression) but they are not
identical

*Branches
- General principle: If the Boolean evaluates to true then execute a
statement or statements (once)

- Example: display a popup message if the number of typographical errors
exceeds a cutoff.

eloops
- General principle: As long as (or while) the Boolean evaluates to true then
execute a statement or statements (multiple times)

- Example: While there are documents in a folder that the program hasn’t
printed then continue to open another document and print it.

James Tam

Repetition using loops

Common Mistake #1: Example

*Program name: 11branchVsLoop.py
- Learning objective: knowing the difference between a branching vs. an
iterative (solution).
age = int(input("Age positive only: "))
if (age < 9):
age = int(input("Age positive only: "))
print("Branch:", age)

Vs.
age = int(input("Age positive only: "))
while (age < 9):

age = int(input("Age positive only: "))
print(“Loop:", age)

James Tam

Nesting

eRecall: Nested branches (one inside the other)

- Nested branches:
If (Boolean):
If (Boolean):

eBranches and loops (for, while) can be nested within each

other
Scenario 1 # Scenario 2
loop (Boolean): if (Boolean):
if (Boolean): loop (Boolean):

Scenario 3
loop (Boolean):
loop (Boolean):

James Tam

Repetition using loops

Recognizing When Looping & Nesting Is
Needed

eScenario 1: As long some condition is met a question will be
asked (branch = question).

- Example: As the question is asked if the answer is invalid then an error
message will be displayed.
eExample: While the user entered an invalid value for age (too high or too low)
then if the age is too low an error message will be displayed.
*Type of nesting: an IF-branch nested inside of a loop
loop (Boolean):
if (Boolean):

James Tam

IF Nested Inside A While

eProgram name: 12nestingIFinsideWHILE.py
- Learning objective: checking a condition during a repetitive process.

age = -1
MIN_AGE 1
MAX_AGE = 118
age = int(input("How old are you (1-118): "))
while ((age < MIN_AGE) or (age > MAX_AGE)):
if (age < MIN_AGE):
print("Age cannot be lower than", MIN_AGE, "years")
#(Age for too high also possible (similar)
age = int(input("How old are you (1-118): "))

print("Age=", age, "is age-okay")

James Tam

Repetition using loops

Recognizing When Looping & Nesting Is
Needed

eScenario 2: If a question (Boolean expression for a branch)
answers true then check if a process should be repeated.

- Example: If the user specified the country of residence as Canada then
repeatedly prompt for the province of residence as long as the province
is not valid.

- Type of nesting: a loop nested inside of an IF-branch
If (Boolean):

loop ():

James Tam

While Nested Inside An IF

eProgram name: 13nestingWHILEinsideIF.py
- A repetitive process that occurs given a condition has been met

country = ""
province =
VALID _PROVINCES = "BC, AB, SK, MB, ON, PQ,NL, NB, NS, PEI"
country = input("What is your country of citizenship: ")
if (country == "Canada"):
province = input("What is your province of citizenship: ")
while province not in (VALID_PROVINCES):
print("Valid provinces: %s" %(VALID_PROVINCES))
province = input("What is your province of citizenship: ")
print("Country:", country, ", Province:",province)

James Tam

Repetition using loops

Recognizing When Looping & Nesting Is
Needed

eScenario 3: While one process is repeated, repeat another
process.

- More specifically: for each step in the first process repeat the second
process from start to end

- Example: While the user indicates that he/she wants to calculate another
tax return prompt the user for income, while the income is invalid
repeatedly prompt for income.

- Type of nesting: a loop nested inside of an another loop

Loop():
Loop():

James Tam

Pseudo Code

A high level solution or algorithm that is not specified in a
programming language.

e|Instead English-like statements are used.

- “A high-level description of the actions of a program or algorithm, using a
mixture of English and informal programming language syntax” — Python
for Everyone (Horstmann, Necaise)

eBenefits: it allows the programmer to focus on the solution
without spending a lot time worrying about details such as
syntax.

James Tam

Repetition using loops

Nested Loop: Example Process In Pseudo Code

Each time we

have a tax
. return to
Do While (user wants to calculate another return) calculate
Do While (salary invalid) For each clientas =
long as salary
Get SGIGr‘y information invalid repeatedly Complete
prompt each of these
~steps from
Do While (invesTmenT income invalid) start to end
Get investment income
—

James Tam

While Nested Inside Another While

eProgram name: 14nestingWHILEinsideWHILE. py
- Learning objective: a repetitive process that repeats from start to end each
time another repetitive process occurs.

MIN_INCOME = ©

runAgain = "yes"

while (runAgain == "yes"):
print("CALCULATING A TAX RETURN")
income = -1

while (income < MIN_INCOME):
income = int(input("Income $"))
runAgain = input("To calculate another return enter 'yes': ")

James Tam

Repetition using loops

Analyzing Another Nested Loop

*One loop executes inside of another loop(s).

eExample structure:
Outer loop (runs n times)
Inner loop (runs m times)
Body of inner loop (runs n x m times)

* Program name: 15nested_nested_loop_repeats_start_end.py
- Learning objective: for each number in a sequence a second sequence
counts from start to end.

print("Done!")

i=1 i 1 1
while (i <= 2): i 1 2
j=1 : 3
while (j <= 3): 1 1 3
print("i = ", i, " j =", 3) i= 2 1
j=3+1 i P P
i=1i+1 i) 3
Do

James Tam

Practice Example #2: Nesting

1. Write a program that will count out all the numbers from one
to six.

2. For each of the numbers in this sequence the program will
determine if the current count (1 — 6) is odd or even.

a) The program display the value of the current count as well an indication
whether it is odd or even.

e Which Step (#1 or #2) should be completed first?

James Tam

Repetition using loops

Step #1 Completed: Now What?

eFor each number in the sequence determine if it is odd or
even.

*This can be done with the modulo (remainder) operator: %
- An even number modulo 2 equals zero (2, 4, 6 etc. even divide into 2 and
yield a remainder or modulo of zero).
-if (counter % 2 == 0): # Even
- An odd number modulo 2 does not equal zero (1, 3, 5, etc.)

ePseudo code visualization of the problem
Loop to count from 1 to 6
Determine if number is odd/even and display message
End Loop

- Determining whether a number is odd/even is a part of counting through
the sequence from 1 — 6, checking odd/even is nested within the loop

James Tam

Q: What if the user

. Jjust typed ‘abc’ and hit
The Break Instruction ;..

e|t is used to terminate the repetition of a loop which is separate
from the main Boolean expression (it’s another, separate
Boolean expression).

eGeneral structure:

for (Condition 1): while (Condition 1):
if (Condition 2): if (Condition 2):
break break

*Program name: 16break_illustration_only_avoid.py

- Learning objective: early termination of a loop occurring any time in the loop body
(most for illustration purposes).
strl = input("Enter a series of lower case alphabetic characters: ")
for temp in stril:
if ((temp < "a") or (temp > "z")):
break
print(temp)
print("Done")

s of lower case alphabetic characters:

Repetition using loops

The Break Should Be Rarely Used

eAdding an extra exit point in a loop (aside from the Boolean
expression in the while loop) may make it harder to trace
execution (leads to ‘spaghetti’ programming).

(while)
Boolean met?

Y

JT: While adding a
Instruction single break may not
always result in
‘spaghetti’ it’s the

beginning of a bad
habit that may result
in difficult to trace
programs

...rest of program

James Tam

An Alternate To Using A ‘Break’

*NO: Instead of an ‘if’ and ‘break’ inside the body of the loop
while (BE1):
if (BE2):
break

e YES: Add the second Boolean expression as part of the
loop’ s main Boolean expression
while ((BE1) and not (BE2)):

James Tam

Repetition using loops

Another Alternative To Using A ‘Break’

*YES: If the multiple Boolean expressions become too complex
consider usinga ‘flag’

flag = True
while (flag == True):
if (BE1):
flag = False
if (BE2)
flag = False

Otherwise the flag remains set to true
BE = A Boolean expression

*Both of these approaches (YES #1 & 2)still provide the
advantage of a single exit point from the loop.

James Tam

Alternative To Using Break

*Third, complete and executable example:
17_break_alternative.py

- A fully working example for you to look through on your own if you need
to see a fully working alternative to using a break.

James Tam

Repetition using loops

10

Infinite Loops

eInfinite loops never end (the stopping condition is never met).

*They can be caused by logical errors:
-The loop control is never updated (Example 1 — below).

- The updating of the loop control never brings it closer to the stopping
condition (Example 2 — next slide).

*Program name: 18infinitel.py
- Learning objective: a loop that never ends.

i=1 ic
while (i <= 10): i

print("i = ", i) ij
i=1i+1 ii

To stop a program with an infinite loop in Unix simultaneously press the <ctrl> and the <c> keys

James Tam

Infinite Loops (2)

*Program name: 19infinite2.py
- Learning objective: a loop that never ends.

i=10
while (i > 9):
print("i =", 1)

i=1i+1

print("Done!")

To stop a program with an infinite loop in Unix simultaneously press the <ctrl> and the <c> keys

James Tam

Repetition using loops

11

Testing Loops

*Make sure that the loop executes the proper number of times.

eTest conditions:
1) Loop does not run
2) Loop runs exactly once
3) Loop runs exactly ‘n’ times

James Tam

Testing Loops: An Example

Program name: 20testing.py
- Learning objective: minimum tests for a loop that steps through a
sequence.

sum = @

i=1

last = 0@

last = int(input("Enter the last number in the sequence to sum : "))

while (i <= last):
sum = sum + i
print("i = ", i)

i=1i+1

print("sum =", sum)

James Tam

Repetition using loops

12

Extra Practice #3

*Write a loop that will continue repeating if the user enters a
value that is negative.

*Write a program that will prompt the user for number and an
exponent. Using a loop the program will calculate the value of
the number raised to the exponent.

-To keep it simple you can limit the program to non-negative exponents.

James Tam

After This Section You Should Now Know

eHow/when to employ nested branches and loops
- How to trace their execution

*The break instruction, why it should be avoided and
alternatives to its use

*What is an infinite loop
eHow to test loops

James Tam

Repetition using loops

13

Copyright Notification

*“Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

James Tam

Repetition using loops

14

