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CPSC 217,
Loops In Python: Part 2

In this section of notes you will learn 
how to rerun parts of your program 
without duplicating instructions.
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Common Mistake #1

•Mixing up branches (IF and variations) vs. loops (while)

•Related (both employ a Boolean expression) but they are not 
identical

•Branches 
- General principle: If the Boolean evaluates to true then execute a 

statement or statements (once)

- Example: display a popup message if the number of typographical errors 
exceeds a cutoff.

•Loops
- General principle: As long as (or while) the Boolean evaluates to true then 

execute a statement or statements (multiple times)

- Example: While there are documents in a folder that the program hasn’t 
printed then continue to open another document and print it.
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Common Mistake #1: Example

•Program name: 11branchVsLoop.py
- Learning objective: knowing the difference between a branching vs. an 

iterative (solution).

age = int(input("Age positive only: "))
if (age < 0):

age = int(input("Age positive only: "))
print("Branch:", age)

age = int(input("Age positive only: "))
while (age < 0):

age = int(input("Age positive only: "))
print("Loop:", age)

Vs.
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Nesting

•Recall: Nested branches (one inside the other)
- Nested branches:
If (Boolean):

If (Boolean):

...

•Branches and loops (for, while) can be nested within each 
other
# Scenario 1                    # Scenario 2

loop (Boolean): if (Boolean):

if (Boolean): loop (Boolean):

... ...

# Scenario 3

loop (Boolean):

loop (Boolean):

...
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Recognizing When Looping & Nesting Is 
Needed

•Scenario 1: As long some condition is met a question will be 
asked (branch = question). 
- Example: As the question is asked if the answer is invalid then an error 

message will be displayed.
•Example: While the user entered an invalid value for age (too high or too low) 

then if the age is too low an error message will be displayed.
•Type of nesting: an IF-branch nested inside of a loop
loop (Boolean):

if (Boolean):

...
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IF Nested Inside A While

•Program name: 12nestingIFinsideWHILE.py
- Learning objective: checking a condition during a repetitive process.

age = - 1

MIN_AGE = 1

MAX_AGE = 118

age = int(input("How old are you (1-118): "))

while ((age < MIN_AGE) or (age > MAX_AGE)):

if (age < MIN_AGE):

print("Age cannot be lower than", MIN_AGE, "years")

#(Age for too high also possible (similar)

age = int(input("How old are you (1-118): "))

print("Age=", age, "is age-okay")
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Recognizing When Looping & Nesting Is 
Needed

•Scenario 2: If a question (Boolean expression for a branch) 
answers true then check if a process should be repeated.
- Example: If the user specified the country of residence as Canada then 

repeatedly prompt for the province of  residence as long as the province 
is not valid.

- Type of nesting: a loop nested inside of an IF-branch
If (Boolean):

loop ():
...

James Tam

While Nested Inside An IF

•Program name: 13nestingWHILEinsideIF.py
- A repetitive process that occurs given a condition has been met

country = ""

province = ""

VALID_PROVINCES = "BC, AB, SK, MB, ON, PQ,NL, NB, NS, PEI"

country = input("What is your country of citizenship: ")

if (country == "Canada"):

province = input("What is your province of citizenship: ")

while province not in (VALID_PROVINCES):        

print("Valid provinces: %s" %(VALID_PROVINCES))

province = input("What is your province of citizenship: ")

print("Country:", country, ", Province:",province)



Repetition using loops 5

James Tam

Recognizing When Looping & Nesting Is 
Needed

•Scenario 3: While one process is repeated, repeat another 
process.
- More specifically: for each step in the first process repeat the second 

process from start to end

- Example: While the user indicates that he/she wants to calculate another 
tax return prompt the user for income, while the income is invalid 
repeatedly prompt for income.

- Type of nesting: a loop nested inside of an another loop 
Loop():

Loop():
...
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Pseudo Code

•A high level solution or algorithm that is not specified in a 
programming language.

•Instead English-like statements are used.
- “A high-level description of the actions of a program or algorithm, using a 

mixture of English and informal programming language syntax” – Python 

for Everyone (Horstmann, Necaise)

•Benefits: it allows the programmer to focus on the solution 
without spending a lot time worrying about details such as 
syntax.
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Nested Loop: Example Process In Pseudo Code

Do While (user wants to calculate another return)

Do While (salary invalid)

Get salary information

Do While (investment income invalid)

Get investment income

…

Each time we 

have a tax 

return to 

calculate

Complete 

each of these 

steps from 

start to end

For each client as 

long as salary 

invalid repeatedly 

prompt
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While Nested Inside Another While

•Program name: 14nestingWHILEinsideWHILE.py
- Learning objective: a repetitive process that repeats from start to end each 

time another repetitive process occurs. 

MIN_INCOME = 0

runAgain = "yes"

while (runAgain == "yes"):

print("CALCULATING A TAX RETURN")

income = -1

while (income < MIN_INCOME):

income = int(input("Income $"))

runAgain = input("To calculate another return enter 'yes': ")



Repetition using loops 7

James Tam

Analyzing Another Nested Loop

•One loop executes inside of another loop(s).
•Example structure:
Outer loop (runs n times)

Inner loop (runs m times)
Body of inner loop (runs n x m times)

• Program name: 15nested_nested_loop_repeats_start_end.py
- Learning objective: for each number in a sequence a second sequence 

counts from start to end.

i = 1
while (i <= 2):

j = 1
while (j <= 3):

print("i = ", i, " j = ", j)
j = j + 1

i = i + 1
print("Done!")
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Practice Example #2: Nesting

1. Write a program that will count out all the numbers from one 
to six.

2. For each of the numbers in this sequence the program will 
determine if the current count (1 – 6) is odd or even.

a) The program display the value of the current count as well an indication 
whether it is odd or even.

• Which Step (#1 or #2) should be completed first?
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Step #1 Completed: Now What?

•For each number in the sequence determine if it is odd or 
even.

•This can be done with the modulo (remainder) operator: %
- An even number modulo 2 equals zero (2, 4, 6 etc. even divide into 2 and 

yield a remainder or modulo of zero).

-if (counter % 2 == 0): # Even

- An odd number modulo 2 does not equal zero (1, 3, 5, etc.)

•Pseudo code visualization of the problem
Loop to count from 1 to 6

Determine if number is odd/even and display message
End Loop
- Determining whether a number is odd/even is a part of counting through 

the sequence from 1 – 6, checking odd/even is nested within the loop
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The Break Instruction

•It is used to terminate the repetition of a loop which is separate 
from the main Boolean expression (it’s another, separate 
Boolean expression).

•General structure:
for (Condition 1): while (Condition 1):

if (Condition 2):            if (Condition 2):

break break

•Program name: 16break_illustration_only_avoid.py
- Learning objective: early termination of a loop occurring any time in the loop body 

(most for illustration purposes).
str1 = input("Enter a series of lower case alphabetic characters: ")

for temp in str1:

if ((temp < "a") or (temp > "z")):

break

print(temp)

print("Done")

Q: What if the user 
just typed ‘abc’ and hit 
enter?
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The Break Should Be Rarely Used

•Adding an extra exit point in a loop (aside from the Boolean 
expression in the while loop) may make it harder to trace 
execution (leads to ‘spaghetti’ programming).

(while)

Boolean met?

Instruction

Y

N

…rest of program

(If)

Boolean met?

Y

N

JT: While adding a 
single break may not 
always result in 
‘spaghetti’ it’s the 
beginning of a bad 
habit that may result 
in difficult to trace 
programs
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An Alternate To Using A ‘Break’

•NO: Instead of an ‘if’ and ‘break’ inside the body of the loop
while (BE1):

if (BE2):

break

• YES: Add the second Boolean expression as part of the 
loop’s main Boolean expression

while ((BE1) and not (BE2)):
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Another Alternative To Using A ‘Break’

•YES: If the multiple Boolean expressions become too complex 
consider using a ‘flag’

flag = True

while (flag == True):

if (BE1):

flag = False

if (BE2)

flag = False

# Otherwise the flag remains set to true

# BE = A Boolean expression

•Both of these approaches (YES #1 & 2)still provide the 
advantage of a single exit point from the loop.
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Alternative To Using Break

•Third, complete and executable example: 
17_break_alternative.py
- A fully working example for you to look through on your own if you need 

to see a fully working alternative to using a break.
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Infinite Loops

•Infinite loops never end (the stopping condition is never met).

•They can be caused by logical errors:
- The loop control is never updated (Example 1 – below).

- The updating of the loop control never brings it closer to the stopping 
condition (Example 2 – next slide).

•Program name: 18infinite1.py
- Learning objective: a loop that never ends.

i = 1

while (i <= 10):

print("i = ", i)

i = i + 1

To stop a program with an infinite loop in Unix simultaneously press the <ctrl> and the <c> keys
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Infinite Loops (2)

•Program name: 19infinite2.py
- Learning objective: a loop that never ends.

i = 10

while (i > 0):

print("i = ",  i)

i = i + 1

print("Done!")

To stop a program with an infinite loop in Unix simultaneously press the  <ctrl> and the <c> keys
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Testing Loops

•Make sure that the loop executes the proper number of times.

•Test conditions:
1) Loop does not run

2) Loop runs exactly once

3) Loop runs exactly ‘n’ times
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Testing Loops: An Example

Program name: 20testing.py
- Learning objective: minimum tests for a loop that steps through a 

sequence.

sum = 0

i = 1

last = 0

last = int(input("Enter the last number in the sequence to sum : "))

while (i <= last):

sum = sum + i

print("i = ", i)

i = i + 1

print("sum =", sum)
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Extra Practice #3

•Write a loop that will continue repeating if the user enters a 
value that is negative.

•Write a program that will prompt the user for number and an 
exponent. Using a loop  the program will calculate the value of 
the number raised to the exponent.
- To keep it simple you can limit the program to non-negative exponents.
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After This Section You Should Now Know

•How/when to employ nested branches and loops
- How to trace their execution

•The break instruction, why it should be avoided and 
alternatives to its use

•What is an infinite loop

•How to test loops
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Copyright Notification

•“Unless otherwise indicated, all images in this presentation 
are used with permission from Microsoft.”

slide 29


