
5/5/2021

Programming introduction 1

Getting Started With Python
Programming: Part 3

•Named constants

•Documenting programs

•Prewritten python functions

•Common programming errors

•Programming style: layout and
formatting of your program

James Tam

Reminder: Variables

• By convention variable names are all lower case

• The exception is long (multi-word) names

• As the name implies their contents can change as a program
runs e.g.,
income = 300000

income = income + interest

Income = income + bonuses

5/5/2021

Programming introduction 2

James Tam

Named Constants

•They are similar to variables: a memory location that’s been
given a name.

•Unlike variables their contents shouldn’t change.
•This means changes should not occur because of style reasons rather
than because Python prevents the change

•The naming conventions for choosing variable names generally
apply to constants but the name of constants should be all
UPPER CASE. (You can separate multiple words with an
underscore).

•Example PI = 3.14

•They are capitalized so the reader of the program can
distinguish them from variables.
–For some programming languages the translator will enforce the

unchanging nature of the constant.

–For languages such as Python it is up to the programmer to recognize a
named constant and not to change it.

James Tam

Why Use Named Constants

1. They make your program easier to read and understand
NO

populationChange = (0.1758 – 0.1257) * currentPopulation

Vs.

#YES

BIRTH_RATE = 17.58

MORTALITY_RATE = 0.1257

currentPopulation = 1000000

populationChange = (BIRTH_RATE - MORTALITY_RATE) *

currentPopulation

Avoid unnamed constants

whenever possible!

5/5/2021

Programming introduction 3

James Tam

Why Use Named Constants (2)

2) Makes the program easier to maintain.
– If the constant is referred to several times throughout the program,

changing the value of the constant once will change it throughout the
program.

– Using named constants is regarded as “good style” when writing a
computer program.

James Tam

Purpose Of Named Constants (3)

BIRTH_RATE = 0.998

MORTALITY_RATE = 0.1257

populationChange = 0

currentPopulation = 1000000

populationChange = (BIRTH_RATE - MORTALITY_RATE) *
currentPopulation

if (populationChange > 0):

print("Increase")

print("Birth rate:", BIRTH_RATE, " Mortality rate:",
MORTALITY_RATE, " Population change:", populationChange)

elif (populationChange < 0):

print("Decrease")

print("Birth rate:", BIRTH_RATE, " Mortality rate:",
MORTALITY_RATE, "Population change:", populationChange)

else:

print("No change")

print("Birth rate:", BIRTH_RATE, " Mortality rate:",
MORTALITY_RATE, "Population change:", populationChange)

5/5/2021

Programming introduction 4

James Tam

Purpose Of Named Constants (4)

BIRTH_RATE = 0.998

MORTALITY_RATE = 0.1257

populationChange = 0

currentPopulation = 1000000

populationChange = (BIRTH_RATE - MORTALITY_RATE) *
currentPopulation

if (populationChange > 0):

print("Increase")

print("Birth rate:", BIRTH_RATE, " Mortality rate:",
MORTALITY_RATE, " Population change:", populationChange)

elif (populationChange < 0):

print("Decrease")

print("Birth rate:", BIRTH_RATE, " Mortality rate:",
MORTALITY_RATE, "Population change:", populationChange)

else:

print("No change")

print("Birth rate:", BIRTH_RATE, " Mortality rate:",
MORTALITY_RATE, "Population change:", populationChange)

One change in the
initialization of the
constant changes every
reference to that
constant

James Tam

Purpose Of Named Constants (5)

BIRTH_RATE = 0.1758

MORTALITY_RATE = 0.0001

populationChange = 0

currentPopulation = 1000000

populationChange = (BIRTH_RATE - MORTALITY_RATE) *
currentPopulation

if (populationChange > 0):

print("Increase")

print("Birth rate:", BIRTH_RATE, " Mortality rate:",
MORTALITY_RATE, " Population change:", populationChange)

elif (populationChange < 0):

print("Decrease")

print("Birth rate:", BIRTH_RATE, " Mortality rate:",
MORTALITY_RATE, "Population change:", populationChange)

else:

print("No change")

print("Birth rate:", BIRTH_RATE, " Mortality rate:",
MORTALITY_RATE, "Population change:", populationChange)

One change in the
initialization of the
constant changes every
reference to that
constant

5/5/2021

Programming introduction 5

James Tam

When To Use A Named Constant?

• (Rule of thumb): If you can assign a descriptive, useful, self-
explanatory name to a constant then you probably should.

• Example 1 (easy to provide self explanatory constant name)
INCH_CM_RATIO = 2.54

height = height * INCH_CM_RATIO

• Example 2 (providing self explanatory names for the constants
is difficult)
calories used = (10 x weight) + (6.25 x height) - [(5 x age)
- 161]

James Tam

Named Constants: A Final Example

• Which of the following programs is more self explanatory (“self
documenting” code)?
– (You will learn how the ‘IF’ works in the branching/decisions making

lectures).

– Example #1:
gameStatus = 1

silverLockPosition = 2

goldLockPosition = 0

If ((silverLockPosition == 1) and (goldLockPosition == 0)):

gameStatus = 2

– Approach #2:
WON = 2

LEFT = 0

RIGHT = 1

CENTER = 2

If ((silverLockPosition == RIGHT) and (goldLockPosition == LEFT)):

gameStatus = WON

Correct/incorrect use
of named constants
can affect your
assignment grade

5/5/2021

Programming introduction 6

James Tam

Extra Practice

• Provide a formula where it would be appropriate to use named
constants (should be easy).

• Provide a formula where unnamed constants (i.e. named
constant used instead of named constants) may be acceptable
(may be trickier).

• Search for formulas in science or engineering sites online if you
can’t think of any formulas.

James Tam

Section Summary: Named Constants

• What is a named constant
– How does it differ from a variable

– How does it differ from an unnamed constant

– What are some reasons for using named constants

• Naming conventions for named constants

5/5/2021

Programming introduction 7

James Tam

Program Documentation

• Program documentation: Used to provide information about a
computer program to another programmer (writes or modifies
the program).

• This is different from a user manual which is written for people
who will use the program.

• Documentation is written inside the same file as the computer
program (when you see the computer program you can see the
documentation).

• The purpose is to help other programmers understand the
program: what the different parts of the program do, what are
some of it’s limitations etc.

James Tam

Program Documentation (2)

• Doesn’t contain instructions for the computer to execute.

• Not translated into machine language.

• Consists of information for the reader of the program:
– What does the program as a while do e.g., calculate taxes.

– What are the specific features of the program e.g., it calculates personal
or small business tax.

– What are it’s limitations e.g., it only follows Canadian tax laws and
cannot be used in the US. In Canada it doesn’t calculate taxes for
organizations with yearly gross earnings over $1 billion.

– What is the version of the program.

• If you don’t use numbers for the different versions of your program
then simply use dates (tie versions with program features – more on
this in a moment “Program versioning and backups”).

5/5/2021

Programming introduction 8

James Tam

Program Documentation (3)

• Format (single line documentation):

<Documentation>

• Examples:
Tax-It v1.0: This program will electronically calculate

your tax return. This program will only allow you to complete

a Canadian tax return.

The number sign ‘#” flags the

translator that the remainder of the

line is documentation.

James Tam

Program Documentation (4)

• Format (multiline documentation):

""" <Start of documentation>

...

<End of documentation> """

• Examples:
"""

Tax-It v1.0: This program will electronically calculate

your tax return. This program will only allow you to complete

a Canadian tax return.

"""

5/5/2021

Programming introduction 9

James Tam

Assignment Documentation Requirements

• Absolute minimum: author contact information (full name,
student identification number, tutorial number that you are
registered in).

• Other information to document:
– Program version

• List of features in the assignment description that your program implemented
for each version (paraphrase or even copy-pasting of requirements is
acceptable).

– Any weaknesses or limitation of your program (e.g. 1: program crashes if
a non-numeric value is entered when a number is expected, e.g. 2:
program cannot calculate a quotient if the user enters denominator of
zero).

– See the requirements of the specific assignment for more details.

James Tam

Program Versioning And Back Ups

• As significant program features have been completed (tested
and the errors removed/debugged) a new version should be
saved in a separate file.

Version: Sept 20,
2012
Program features:
(1) Load game
(2) Show game world

Game.Sept20
Version: Sept 20,
2012
Program features:
(1) Load game
(2) Show game
world

Game.py

Make backup file

5/5/2021

Programming introduction 10

James Tam

Program Versioning And Back Ups

• As significant program features have been completed (tested
and the errors removed/debugged) a new version should be
saved in a separate file.

Version: Oct 2,
2012
Program features:
(1) Save game

Version: Sept 20,
2012
Program features:
(1) Load game
(2) Show game
world

Game.py

Version: Oct 2, 2012
Program features:
(1) Save game

Version: Sept 20, 2012
Program features:
(1) Load game
(2) Show game world

Game.Oct2

Make new
backup file

Version: Sept 20,
2012
Program features:
(1) Load game
(2) Show game world

Game.Sept20

James Tam

Backing Up Your Work

• Do this every time that you have completed a significant
milestone in your program.
– What is ‘significant’ will vary between people but make sure you do this

periodically.

• Ideally the backup file should be stored in a separate
directory/folder (better yet on a separate device and/or using
an online method such as an email attachment or ‘cloud’
storage).

• Common student reason for not making copies: “Backing up
files takes time!”

• Compare:
– Time to copy a file: ~10 seconds (generous in some cases).

– Time to re-write your program to implement the feature again: 10
minutes (might be overly conservative in some cases).

• Failing to backup your work is not a sufficient reason for
receiving an extension.

5/5/2021

Programming introduction 11

James Tam

Over-Documenting A Program

• Except for very small programs documentation should be
included

• However it is possible to over-document a program

• (Stating the obvious)
num = num + 1 #Variable num increased by one

• (Documentation of the last row in a list may be a good
reminder)
lastRow = SIZE – 1 #Row numbering begins at zero

Example: there are 3 rows in a list (size = 3)

– First row = 0

– Second row = 1

– Third (and last) row = 2 (equals 3-1 = 2)

James Tam

Section Summary: Documentation

• What is program documentation

• What sort of documentation should be written for your
programs

• How program documentation ties into program versioning and
backups

5/5/2021

Programming introduction 12

James Tam

Prewritten Python Functions

• Python comes with many functions that are a built in part of
the language e.g., ‘print()’, ‘input()’

• (If a program needs to perform a common task e.g., finding the
absolute value of a number, then you should first check if the
function has already been implemented).

• For a list of all prewritten Python functions.
– https://docs.python.org/3/library/functions.html

– Note: some assignments may have specific instructions which list
functions you are allowed to use (assume that you cannot use a
function unless: (1) it’s extremely common e.g., input and output (2)
it’s explicitly allowed)

– Read the requirements specific to each assignment

– When in doubt don’t use the pre-created code either ask or don’t use it
and write the code yourself. (If you end up using a pre-created function
rather than writing the code yourself you could receive no credit).

James Tam

Types Of Programming Errors

1. Syntax/translation errors

2. Runtime errors

3. Logic errors

https://docs.python.org/3/library/functions.html

5/5/2021

Programming introduction 13

James Tam

1. Syntax/ Translation Errors

• Each language has rules about how statements are to be
structured.

• An English sentence is structured by the grammar of the
English language:
– My cat sleeps the sofa.

• Python statements are structured by the syntax of Python:
5 = num

Grammatically incorrect (FYI: missing the preposition to

introduce the prepositional phrase ‘the sofa’)

Syntactically incorrect: the left hand side of an assignment

statement cannot be a literal (unnamed) constant (or variable

names cannot begin with a number)

James Tam

1. Syntax/ Translation Errors (2)

• The translator checks for these errors when a computer
program is translated to machine language.

5/5/2021

Programming introduction 14

James Tam

1. Some Common Syntax Errors

• Miss-spelling names of keywords
– e.g., ‘primt()’ instead of ‘print()’

• Forgetting to match closing quotes or brackets to opening
quotes or brackets e.g., print("hello)

• Using variables before they’ve been named (allocated in
memory).

• Name of the full example: 16error_syntax.py
print(num)

num = 123

James Tam

2. Runtime Errors

• Occur as a program is executing (running).

• The syntax of the language has not been violated (each
statement follows the rules/syntax).

• During execution a serious error is encountered that causes
the execution (running) of the program to cease.

• With a language like Python where translation occurs just
before execution (interpreted) the timing of when runtime
errors appear won’t seem different from a syntax error.

• But for languages where translation occurs well before
execution (compiled) the difference will be quite noticeable.

• A common example of a runtime error is a division by zero
error.
– We will talk about other run time errors later.

5/5/2021

Programming introduction 15

James Tam

2. Runtime Error1: An Example

• Name of the full example: 17error_runtime.py

num2 = int(input("Type in a number: "))

num3 = int(input("Type in a number: "))

num1 = num2 / num3 # When zero is entered

print(num1)

1 When ‘num3’ contains zero

James Tam

3. Logic Errors

• The program has no syntax errors.
• The program runs from beginning to end with no runtime

errors.
• But the logic of the program is incorrect (it doesn’t do what it’s

supposed to and may produce an incorrect result).
• Name of the full example: 18error_logic.py

print ("This program will calculate the area of a rectangle")

length = int(input("Enter the length: "))

width = int(input("Enter the width: "))

area = length + width

print("Area: ", area)

5/5/2021

Programming introduction 16

James Tam

Some Additional Examples Of Errors

• All external links (not produced by your instructor):
– http://level1wiki.wikidot.com/syntax-error

– http://www.cs.bu.edu/courses/cs108/guides/debug.html

– http://cscircles.cemc.uwaterloo.ca/1e-errors/

– http://www.greenteapress.com/thinkpython/thinkCSpy/html/app01.html

James Tam

Practice Exercise

• (This one will be an ongoing task).

• As you write you programs, classify the type of errors that you
encounter as: syntax/translation, runtime or logical.

http://level1wiki.wikidot.com/syntax-error
http://www.cs.bu.edu/courses/cs108/guides/debug.html
http://cscircles.cemc.uwaterloo.ca/1e-errors/
http://www.greenteapress.com/thinkpython/thinkCSpy/html/app01.html

5/5/2021

Programming introduction 17

James Tam

Section Summary: The 3 Error Types

• What are different categories of errors

• What is the difference between the categories of errors and
being able to identify examples of each

James Tam

Layout And Formatting

• Similar to written text: all computers programs (except for the
smallest ones) should use white space to group related
instructions and to separate different groups.
These are output statements to prompt for user information

Instruction1

Instruction2

Instruction3

Instruction4

These are instructions to perform calculations on the user

input and display the results

Instruction5

Instruction6

5/5/2021

Programming introduction 18

James Tam

Layout And Formatting: Example

James Tam

Section Summary: Layout And Formatting

• Why is layout and formatting of programs important, how to
do it

5/5/2021

Programming introduction 19

James Tam

Extra: In Case You’re Interested

• Different languages may have unique style guides

• Here a style guide for Python:
– http://legacy.python.org/dev/peps/pep-0008/

James Tam

After This Section You Should Now Know

• How to create, translate and run Python programs.

• Variables:
– What they are used for

– How to access and change the value of a variable

– Conventions for naming variables

– How information is stored differently with different types of variables,
converting between types

• Output:
– How to display messages that are a constant string or the value stored in

a memory location (variable or constant) onscreen with print()

• How/why use triple quoted output

• How to format output through:
– The use of format specifiers

– Escape codes

http://legacy.python.org/dev/peps/pep-0008/

5/5/2021

Programming introduction 20

James Tam

After This Section You Should Now Know (2)

• Named constants:
– What are named constants and how they differ from regular variables

– What are the benefits of using a named constant vs. unnamed constant

• What are the Python operators for common mathematical
operations

• How do the precedence rules/order of operation work in
Python

• Input:
– How to get a program to acquire and store information from the user of

the program

• What is program documentation and what are some common
things that are included in program documentation

• The existence of prewritten Python functions and how to find
descriptions of them

James Tam

After This Section You Should Now Know (3)

• What are the three programming errors, when do they occur
and what is the difference between each one

• How to use formatting to improve the readability of your
program

