
5/19/2021

Decomposition/functions 1

Functions: Decomposition And
Code Reuse, Part 1

• Defining new functions

• Calling functions you have defined

• Declaring variables that are local to a

function

James Tam

Tip For Success: Reminder

• Look through the examples and notes before class.

• This is especially important for this section because the
execution of these programs will not be sequential order.

• Instead execution will appear to ‘jump around’ so it will be
harder to follow the examples if you don’t do a little
preparatory work.

• Also it would be helpful to take notes that include greater
detail:
– For example: Literally just sketching out the diagrams that I draw

without the extra accompanying verbal description that I provide in
class probably won’t be useful to study from later.

5/19/2021

Decomposition/functions 2

James Tam

Solving Larger Problems

• Sometimes you will have to write a program for a large and/or
complex problem.

• One technique employed in this type of situation is the top
down approach to design.
– The main advantage is that it reduces the complexity of the problem

because you only have to work on it a portion at a time.

Top Down Design

1. Start by outlining the major parts (structure)

2. Then implement the solution for each part

My autobiography

Chapter 1:

The humble beginnings
Chapter 2:

My rise to greatness

…

Chapter 7:

The end of an era

Chapter 1: The humble beginnings

It all started ten and one score years ago

with a log-shaped computer work station…

Image copyright unknown

5/19/2021

Decomposition/functions 3

James Tam

Procedural Programming

• Applying the top down approach to programming.

• Rather than writing a program in one large collection of
instructions the program is broken down into parts.

• Each of these parts are implemented in the form of procedures
(also called “functions”, “procedures” or “methods” depending
upon the programming language).

Procedural (Procedure = Function) Programming

Main tasks to

be fulfilled by

the program

Important

subtask #1

Important

subtask #2

Important

subtask #3

Function #1

…Etc.

Function #2 Function #3 …Etc.

When do you stop decomposing and start writing functions? No clear cut off but use the “Good
style” principles (later in these notes) as a guide e.g., a function should have one well defined
task and not exceed a screen in length.

5/19/2021

Decomposition/functions 4

Decomposing A Problem Into Functions

• Break down the program by what it does (described with
actions/verbs or action phrases).

• Eventually the different parts of the program will be
implemented as functions.

Example Problem

• Design a program that will perform a simple interest
calculation.

• The program should prompt the user for the appropriate
values, perform the calculation and display the values
onscreen.

5/19/2021

Decomposition/functions 5

Example Problem

• Design a program that will perform a simple interest
calculation.

• The program should prompt the user for the appropriate
values, perform the calculation and display the values
onscreen.

• Action/verb list:
– Prompt

– Calculate

– Display

Top Down Approach: Breaking A Programming
Problem Down Into Parts (Functions)

Calculate Interest

Get information Do calculations Display results

5/19/2021

Decomposition/functions 6

Things Needed In Order To Use Functions

•Function definition
– Instructions that indicate what the function will do when it runs.

•Function call
– Actually running (executing) the function.

– You have already done this second part many times because up to this
point you have been using functions that have already been defined by
someone else e.g., print(), input()

Functions (Basic Case: No parameters/Inputs)

Function call

Function definition

5/19/2021

Decomposition/functions 7

Defining A Function

• Format:
def <function name>():

body1

• Example:
def displayInstructions():

print ("Displaying instructions on how to use the

program")

1 Body = the instruction or group of instructions that execute when the function executes (when called).

The rule in Python for specifying the body is to use indentation.

Calling A Function

• Format:
<function name>()

• Example:
displayInstructions()

5/19/2021

Decomposition/functions 8

James Tam

Quick Recap: Starting Execution Point

• The program starts at the first executable instruction that is
not indented.

• In the case of your programs thus far all statement have been
un-indented (save loops/branches) so it’s just the first
statement that is the starting execution point.

• But note that the body of functions MUST be indented in
Python.

HUMAN_CAT_AGE_RATIO = 7
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO
…

James Tam

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

• Name of the example program: 1firstExampleFunction.py
– Learning objective:

def displayInstructions():

print("Displaying instructions")

Main body of code (starting execution point, not indented)

displayInstructions()

print("End of program")

5/19/2021

Decomposition/functions 9

James Tam

• Name of the example program: 1firstExampleFunction.py

def displayInstructions():

print("Displaying instructions")

Main body of code (starting execution point)

displayInstructions()

print("End of program")

Functions: An Example That Puts Together All The
Parts Of The Easiest Case

Function

definition

Function call

James Tam

Defining The Main Body Of Code As A Function

• Rather than defining instructions outside of a function the main starting
execution point can also be defined explicitly as a function.

• (The previous program rewritten to include an explicit start function)
Example program: 2firstExampleFunctionV2.py

– Learning objective: enclosing the start of the program inside a function

def displayInstructions():

print ("Displaying instructions")

def start():

displayInstructions()

print("End of program")

• Important: If you explicitly define the starting function then do not forgot
to explicitly call it!

start ()

Don’t forget to start your

program! Program starts

at the first executable

un-indented instruction

5/19/2021

Decomposition/functions 10

James Tam

Stylistic Note

• By convention the starting function is frequently named
‘main()’ or in my case ‘start()’.
def main():

• OR
def start():

• This is done so the reader can quickly find the beginning
execution point.

James Tam

New Terminology

• Local variables: are created within the body of a function
(indented)

• Global constants: created outside the body of a function.

• (The significance of global vs. local is coming up shortly).

HUMAN_CAT_AGE_RATIO = 7

def getInformation():
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO

Global
constant

Local
variables

5/19/2021

Decomposition/functions 11

James Tam

Creating Your Variables

• Before this section of notes: all statements (including the
creation of a variables) occur outside of a function

• Now that you have learned how to define functions, ALL your
variables must be created with the body of a function.

• Constants can still be created outside of a function (more on
this later).

HUMAN_CAT_AGE_RATIO = 7
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO
…

HUMAN_CAT_AGE_RATIO = 7

def getInformation():
age = input("What is your age in years: ")
catAge = age * HUMAN_CAT_AGE_RATIO

‘Outside’: OK for
constants only

Inside function
body: all variables
must be here

James Tam

Why Should Variable Be Declared As Local?

•Variables are memory locations that are used for the temporary
storage of information.

num = 888

•Each variable uses up a portion of memory, if the program is
large then many variables may have to be declared (a lot of
memory may have to be allocated to store the contents of
variables).

888num

RAM

5/19/2021

Decomposition/functions 12

What You Will Learn: What Is The Significance Of
Being ‘Local’

•To minimize the amount of memory that is used to store the
contents of variables only create variables when they are
needed (“allocated”).

•When the memory for a variable is no longer needed it can be
‘freed up’ and reused (“de-allocated”).

•To design a program so that memory for variables is only
allocated (reserved in memory) as needed and de-allocated
when they are not (the memory is free up) variables should be
declared as local to a function.

•(There’s an even better reason for making variables local
coming up later ‘side effects’)

James Tam

Scope

• The scope of an identifier
(variable, constant) is where it
may be accessed and used.

• In Python1:

– An identifier comes into scope
(becomes visible to the program
and can be used) after it has been
declared.

– An identifier goes out of scope (no
longer visible so it can no longer be
used) at the end of the indented
block where the identifier has been
declared.

1 The concept of scoping (limited visibility) applies to all programming languages. The rules for

determining when identifiers come into and go out of scope will vary with a particular language.

RATIO = 7
def getInformation():

age = input("Age: ")

catAge = age * RATIO

getInformation()

age
comes
in
scope

catAge
comes in
scope

End of function (age,
catAge go out of

scope)

RATIO
comes
in
scope

End of program
(RATIO goes out of

scope)

5/19/2021

Decomposition/functions 13

James Tam

Visually Representing Scope

RATIO = 7

def getInformation():

age = input("Age: ")

catAge = age * RATIO

#End of function

getInformation()

#End of whole program

Scope
of age

Scope of
RATIO

Age,
catAge is

not in

scope

Scope

of
catAge

Age,
catAge is

not in

scope

James Tam

What You Will Learn: How To Work With Locals

Function call (local variables

get allocated in memory)

The program code in the function executes
(the variables are used to store
information needed for the function)

Function ends (local variables

get de-allocated in memory)

5/19/2021

Decomposition/functions 14

Reminder: Where To Create Local Variables

def <function name>():

Example:

def fun():

num1 = 1

num2 = 2

Somewhere within
the body of the
function
(indented part)

James Tam

Working With Local Variables: Putting It All Together

• Name of the example program: 3secondExampleFunction.py
– Learning objective: creating/defining variables that only exist while a function runs

(local to that function).

def fun():

num1 = 1

num2 = 2

print(num1, " ", num2)

start function

fun()

Variables that

are local to

function ‘fun’
Scope of num1

Scope of num2

5/19/2021

Decomposition/functions 15

James Tam

After This Section You Should Now Know

• How and why the top down approach can be used to
decompose problems

– What is procedural programming

• How to write the definition for a function

• How to write a function call

• How and why to declare variables locally

• How to pass information to functions via parameters

James Tam

Copyright Notification

• “Unless otherwise indicated, all images in this presentation
are used with permission from Microsoft.”

