
6/1/2021

Composites 1

Composite Types, Lists Part 2

• Working with lists with multiple dimensions

• Creating lists of a fixed size and dynamically
creating one of a variable size

• How to access a list and its parts

• Copying a list

Take Care Not To Exceed The Bounds Of The List

[0]

[1]

[2]

[3]

list OK

OK

OK

OK

???

Example: 6listBounds.py
num1 = 7

list = [0, 1, 2, 3]

num2 = 13

for i in range (0, 4, 1):

print (list [i])

print()

print(list [4]) ???

RAM

num1 7

num2 13

6/1/2021

Composites 2

A Common Way To Avoid Overflowing A List

• Use a constant in conjunction with the list.
SIZE = 100

• The value in the constant controls traversals of the list
for i in range (0, SIZE, 1):

myList[i] = int(input ("Enter a value:"))

for i in range (0, SIZE, 1):

print(myList [i])

A Common Way To Avoid Overflowing A List (2)

• Use a constant in conjunction with the list.
SIZE = 100000

• The value in the constant controls traversals of the list
for i in range (0, SIZE, 1):

myList [i] = int(input ("Enter a value:"))

for i in range (0, SIZE, 1):

print (myList [i])

6/1/2021

Composites 3

James Tam

Python Only Approach To Avoid Overflow

• Use the length function len to get the length of list.

• Example:
myList = someFunctionCreatesList()

myListLength = len(myList)

i = 0

while (i < myListLength):

print(myList[i])

When To Use Lists Of Different Dimensions
• It’s determined by the data – the number of categories of information

determines the number of dimensions to use.

• Examples:

• (1D list)
–Tracking grades for a class (previous example)

–Each cell contains the grade for a student i.e., grades[i]

–There is one dimension that specifies which student’s grades are being
accessed

• (2D list)
–Expanded grades program

–Again there is one dimension that specifies which student’s grades are being
accessed

–The other dimension can be used to specify the lecture section

One dimension (which student)

6/1/2021

Composites 4

When To Use Lists Of Different Dimensions (2)

• (2D list continued)

Student

Lecture

section First

student

Second

student

Third

student
…

L01

L02

L03

L04

L05

:

L0N

When To Use Lists Of Different Dimensions (3)

• (2D list continued)

• Notice that each row is merely a 1D list

• (A 2D list is a list containing rows of 1D lists)

L02

L07

L01

L03

L04

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

Columns

Rows

L06

L05

Important:

• List elements are

specified in the order of
[row] [column]

• Specifying only a single

set of brackets

specifies the row

6/1/2021

Composites 5

Creating And Initializing A Multi-Dimensional
List In Python (Fixed Size)

General structure
<list_name> = [[<value 1>, <value 2>, ... <value n>],

[<value 1>, <value 2>, ... <value n>],

: : :

: : :

[<value 1>, <value 2>, ... <value n>]]

Rows

Columns

Name of the example program: 7display2DList.py

Learning: creating, displaying a fixed size 2D list

matrix = [[0, 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

for r in range (0, 4, 1):

print (matrix[r]) #Each call to print displays a 1D list

for r in range (0,4,1):

for c in range (0,3,1):

print(matrix[r][c], end="")

print()

print(matrix[2][0]) #2 not 0

Creating And Initializing A Multi-Dimensional List In
Python (2): Fixed Size

r = 0

r = 1

r = 2

r = 3

r = 0

r = 1

r = 2

r = 3

0 1 2 (col)

c=0 c=1 c=2

6/1/2021

Composites 6

James Tam

2D Lists: Levels Of Access

matrix = [[0, 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

print (matrix) #Entire list

print(matrix[0]) #First row

print(matrix[3][1]) #4th row, 2nd column

print(matrix[0][0][0]) #What does this do?

matrix = [[["a","b"], 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

print(matrix[0][0][0]) #Now what does this do?

Creating And Initializing A Multi-Dimensional
List In Python: Dynamic Creation

General structure (Using
loops):
• Create a variable that refers to an

empty list

• One loop (outer loop) traverses
the rows.

• Each iteration of the outer loop
creates a new 1D list (empty at
start)

• Then the inner loop traverses the
columns of the newly created 1D
list creating and initializing each
element in a fashion similar to
how a single 1D list was created
and initialized (add to end)

• Repeat the process for each row
in the list

Rowr = 0

c=0 c=1 c=2 c=3

List ref

Rowr = 1

Rowr = 2

Etc.

6/1/2021

Composites 7

James Tam

Creating And Initializing A Multi-Dimensional List In Python:
Dynamic Creation (2)

• Example (Using loops):
aGrid = [] # Create a reference to the list

for r in range (0, 3, 1): # Outer loop runs once for each row

aGrid.append ([]) # Create an empty row (a 1D list)

for c in range (0, 3, 1): # Inner loop runs once for each column

aGrid[r].append (" ") # Create and initialize each element

(space) of the 1D list

Example 2D List Program: A Variable Sized 2D
List (Dynamic)

•Name of the example program: 8variable2DList.py
aGrid = []

noRows = int(input("Number rows: "))

noColumns = int(input("Number columns: "))

#Create list

for r in range (0,noRows,1):

aGrid.append ([])

for c in range (0,noColumns,1):

aGrid[r].append("*")

#Display list

for r in range (0,noRows,1):

for c in range (0,noColumns,1):

print(aGrid[r][c], end="")

print()

6/1/2021

Composites 8

Quick Note” List Elements Need Not Store The
Same Data Type

• This is one of the differences between Python lists and arrays
in other languages

• Example:
aList = [False, "James", "Tam", "210-9455", 707, 10.5]

James Tam

Copying Lists

• Important: A variable that appears to be a list is really a
reference to a list.
– Recall: the reference and the list are two separate memory locations!

matrix = [[0, 0, 0],

[1, 1, 1],

[2, 2, 2],

[3, 3, 3]]

– Wrong way to ‘copy’ a 2D list

aList1 = aList2 (Why is this wrong? Hint: recall what is stored in
aList1 and aList1)

6/1/2021

Composites 9

James Tam

Copying Lists: Example

• Name of the example program: 9copyingLists.py

• This is the wrong way.

aGrid1 = create()

aGrid2 = aGrid1

aGrid1[3][3] = "!"

print("First list")

display(aGrid1)

print("Second list")

display(aGrid2)

def create():
aGrid = []
for r in range (0,SIZE,1):

aGrid.append([])
for c in range (0,SIZE,1):

aGrid[r].append(".")

return(aGrid)

James Tam

Copying Lists: Example (2)

• This is the right way.
aGrid1 = create()

aGrid2 = create()

copy(aGrid1,aGrid2)

copy(aGrid1,aGrid2)

aGrid1[0][0] = "?"

aGrid1[3][3] = "?"

print("First list")

display(aGrid1)

print("Second list")

display(aGrid2)

def copy(destination,source):
for r in range (0,SIZE,1):

for c in range (0,SIZE,1):
destination[r][c] = source[r][c]

6/1/2021

Composites 10

Extra Practice

List operations:
– For a numerical list: implement some common mathematical functions

(e.g., average, min, max, mode – last one is challenging).

– For any type of list: implement common list operations (e.g., displaying
all elements one at a time, inserting elements at the end of the list,
insert elements in order, searching for elements, removing an element).

After This Section You Should Now Know

• When to use lists of different dimensions

• Basic operations on a 2D list

• Techniques to avoid overflowing the bounds of a list

• How to create a 2D list: fixed size and by dynamically creating it

• How to access a 2D list: the whole list, rows in the list and
individual elements

• Python lists need not be homogenous (contain the same type
of element)

• How to properly copy the contents of a 2D list into another 2D
list as well as a common mistake when copying lists

