Composites

Composite Types, Lists Part 2

» Working with lists with multiple dimensions

* Creating lists of a fixed size and dynamically
creating one of a variable size

* How to access a list and its parts
* Copying a list

Take Care Not To Exceed The Bounds Of The List

RAM
Example: 61istBounds.py numi
numl. =7 list [0] [} OK
list = [0, 1, 2, 3] [1] e OK
num2 = 13 [2] l— OK
for i in range (0, 4, 1): [3] l— OK

print (list [i])
num?2 —— 2?77

print()
print(list [4]) «—?77?

6/1/2021

Composites

A Common Way To Avoid Overflowing A List

* Use a constant in conjunction with the list.
SIZE = 100

* The value in the constant controls traversals of the list
for i in range (@, SIZE, 1):
myList[i] = int(input ("Enter a value:"))

for i in range (@, SIZE, 1):
print(myList [i])

A Common Way To Avoid Overflowing A List (2)

* Use a constant in conjunction with the list.
SIZE = 100000

* The value in the constant controls traversals of the list
for i in range (@, SIZE, 1):
myList [i] = int(input ("Enter a value:"))

for i in range (@, SIZE, 1):
print (myList [i])

6/1/2021

Composites

Python Only Approach To Avoid Overflow

* Use the length function len to get the length of list.

* Example:
myList = someFunctionCreatesList()
myListLength = len(myList)

i=90
while (i < myListLength):
print(myList[i])

James Tam

When To Use Lists Of Different Dimensions

* It’s determined by the data — the number of categories of information
determines the number of dimensions to use.

* Examples:

e (1D list)
—Tracking grades for a class (previous example)
—Each cell contains the grade for a student i.e., grades[i]
—There is one dimension that specifies which student’s grades are being
accessed

One dimension (which student)

e (2D list)
—Expanded grades program
—Again there is one dimension that specifies which student’s grades are being
accessed
—The other dimension can be used to specify the lecture section

6/1/2021

Composites

When To Use Lists Of Different Dimensions (2)

* (2D list continued)

Lecture
Section

Student

First Second | Third
student |student |student

LO1

LO2

LO3

LO4

LO5

LON

When To Use Lists Of Different Dimensions (3)

* (2D list continued)
* Notice that each row is merely a 1D list

* (A 2D listis a list containing rows of 1D lists)

(]
(1
(2]
(3]
(4]
(5]
(6]

Columns

/\

/

(0]

(1]

(2]

Lo1

L02

LO3

LO4

LO5

LO6

LO7

Important:

* List elements are

specified in the order of
[row] [column]

+ Specifying only a single

set of brackets
specifies the row

> Rows

6/1/2021

Composites

Creating And Initializing A Multi-Dimensional
List In Python (Fixed Size)

General structure

<list_name> = [[<value 1>, <value 2>, ... <value n>],
[<value 1>, <value 2>, ... <value n>],
Rows
[<value 1>, «<value 2>, ... <value n>]]
N ~ J
Columns

Creating And Initializing A Multi-Dimensional List In
Python (2): Fixed Size
Name of the example program: 7display2DList.py

Learning: creating, displaying a fixed size 2D list

matrix = [[0, @, 0], r=9
[1, 1, 1], P
[2, 2, 2],
[3,3,3]] "7°?

for r in range (0, 4, 1):
print (matrix[r]) #Each call to print displays a 1D list

012 (col)
for r in range (0,4,1): r=o KUY
for ¢ in range (90,3,1): r=1
print(matrix[r][c], end="") r=2
print() r=3

print(matrix[2][0]) #2 not ©

6/1/2021

Composites

2D Lists: Levels Of Access

matrix = [[0, 0, 0],
[1, 1, 1],
[2, 2,
[3, 3, [[8, 8,

print (matrix) #Entire 1i:
print(matrix[@]) #First row
print(matrix[3][1]) #4* row, 2" columﬂ

print(matrix[@][©][@]) #What does this do?

TypeError: "int' object is not subscriptable

matrix = [[["a","b"], @, @],
[1, 1, 1],
[2, 2, 2],
[3, 3, 3]]

print(matrix[@][©][@]) #Now what does this do?

James Tam

Creating And Initializing A Multi-Dimensional
List In Python: Dynamic Creation

General structure (Using

List ref
loops):
. c=0 c=1 c=2 c¢=3
* Create a variable that refers to an
. r= a—| Row |
empty list
* One loop (outer loop) traverses r=1 | Row |
the rows.
r=2 | Row |

Each iteration of the outer loop
creates a new 1D list (empty at
start)

Then the inner loop traverses the
columns of the newly created 1D
list creating and initializing each
element in a fashion similar to
how a single 1D list was created
and initialized (add to end)

Repeat the process for each row
in the list

Etc.

6/1/2021

Composites

Creating And Initializing A Multi-Dimensional List In Python:
Dynamic Creation (2)

* Example (Using loops):

aGrid = [] # Create a reference to the list
for r in range (0, 3, 1): # Outer loop runs once for each row
aGrid.append ([]) # Create an empty row (a 1D list)

for c in range (@, 3, 1): # Inner loop runs once for each column
aGrid[r].append (" ") # Create and initialize each element
(space) of the 1D list

James Tam

Example 2D List Program: A Variable Sized 2D
List (Dynamic)

*Name of the example program: 8variable2DList.py
aGrid = []
noRows = int(input("Number rows: "))
noColumns = int(input("Number columns: "))
#Create list
for r in range (©,noRows,1):

aGrid.append ([])

for ¢ in range (@,noColumns,1):

aGrid[r].append("*")

#Display list
for r in range (©,noRows,1):

for ¢ in range (@,noColumns,1):

print(aGrid[r][c], end="")
print()

6/1/2021

6/1/2021

Quick Note” List Elements Need Not Store The
Same Data Type

* This is one of the differences between Python lists and arrays
in other languages

* Example:
aList = [False, "James", "Tam", "210-9455", 707, 10.5]

Copying Lists

* Important: A variable that appears to be a list is really a
reference to a list.
— Recall: the reference and the list are two separate memory locations!
matrix = [[0, @, @],
[1, 1, 1],
[2, 2, 2],
[3, 3, 3]]
— Wrong way to ‘copy’ a 2D list

alistl = alist2 (Whyis this wrong? Hint: recall what is stored in
alistlandalistl)

James Tam

Composites 8

Composites

Copying Lists: Example

* Name of the example program: 9copyinglLists.py

* This is the wrong way.

def create():
agrid = []
for r in range (0,SIZE,1):

aGridl = create() Grid d(n

o i aGrid.appen
aGr?dZ = aGridl for ¢ in range (0,SIZE,1):
aGrid1[3][3] = "! aGrid[r].append(".")

print("First list")

display(aGridl) return(aGrid)

print("Second list")

display(aGrid2)

James Tam

: Example (2)

* This is the right way.

aGridl = create()
aGrid2 = create()
copy(aGridl,aGrid2)
def copy(destination,source):
for r in range (0,SIZE,1):
for c in range (0,SIZE,1):
copy(aGridl,aGrid2)

aGridi[e][e] = "?"
aGrid1[3][3] = "?"
print("First 1list")
display(aGridl)
print("Second list")
display(aGrid2)

James Tam

6/1/2021

Composites

Extra Practice

List operations:
— For a numerical list: implement some common mathematical functions
(e.g., average, min, max, mode — last one is challenging).
— For any type of list: implement common list operations (e.g., displaying
all elements one at a time, inserting elements at the end of the list,
insert elements in order, searching for elements, removing an element).

After This Section You Should Now Know

* When to use lists of different dimensions

* Basic operations on a 2D list

* Techniques to avoid overflowing the bounds of a list

* How to create a 2D list: fixed size and by dynamically creating it

* How to access a 2D list: the whole list, rows in the list and
individual elements

* Python lists need not be homogenous (contain the same type
of element)

* How to properly copy the contents of a 2D list into another 2D
list as well as a common mistake when copying lists

6/1/2021

10

