
5/26/2021

Composites 1

Composite Types, Lists Part 1

• Declaring a list variable

• Accessing a list vs the elements in the list

• Passing lists as parameters

• Methods of parameter passing

Types Of Variables

Python

variables

1. Simple

(atomic)

integer boolean float

2. Aggregate

(composite)

Lists Tuples Strings

Example Simple type

A variable containing the

number 707 can’t be

meaningfully

decomposed into parts

Example composite
A string (sequence of
characters) can be
decomposed into
individual characters.

5/26/2021

Composites 2

Lists

List

• In many programming languages a list is implemented as an
array.
– This will likely be the term to look for if you are looking for a list-

equivalent when learning a new language.

• Python lists have many of the characteristics of the arrays in
other programming languages but they also have other
features.

5/26/2021

Composites 3

Example Problem

• Write a program that will track the percentage grades for a
class of students. The program should allow the user to enter
the grade for each student. Then it will display the grades for
the whole class along with the average.

Why Bother With A List?

• Name of the example program: 0classListV1.py

– Learning: a “how not” approach for a solution that should employ lists.

CLASS_SIZE = 5

stu1 = float(input("Enter grade for student no. 1: "))

stu2 = float(input("Enter grade for student no. 2: "))

stu3 = float(input("Enter grade for student no. 3: "))

stu4 = float(input("Enter grade for student no. 4: "))

stu5 = float(input("Enter grade for student no. 5: "))

5/26/2021

Composites 4

Why Bother With A List? (2)

total = stu1 + stu2 + stu3 + stu4 + stu5
average = total / CLASS_SIZE

print()
print("GRADES")
print("The average grade is %0.2f%%", %(average))
print("Student no. 1: %0.2f", %(stu1))
print("Student no. 2: %0.2f", %(stu2))
print("Student no. 3: %0.2f", %(stu3))
print("Student no. 4: %0.2f", %(stu4))
print("Student no. 5: %0.2f", %(stu5))

Why Bother With A List? (3)

total = stu1 + stu2 + stu3 + stu4 + stu5
average = total / CLASS_SIZE

print()
print("GRADES")
print("The average grade is %0.2f%%", %(average))
print("Student no. 1: %0.2f", %(stu1))
print("Student no. 2: %0.2f", %(stu2))
print("Student no. 3: %0.2f", %(stu3))
print("Student no. 4: %0.2f", %(stu4))
print("Student no. 5: %0.2f", %(stu5))

NO!

5/26/2021

Composites 5

What Were The Problems With
The Previous Approach?

• Redundant statements.

• Yet a loop could not be easily employed given the types of
variables that you have seen so far.

What’s Needed

• A composite variable that is a collection of another type.
–The composite variable can be manipulated and passed throughout the

program as a single entity.

–At the same time each element can be accessed individually.

• What’s needed…a list!

5/26/2021

Composites 6

Creating A List (Fixed Size)

•Format (‘n’ element list):

<list_name> = [<value 1>, <value 2>, ... <value n>]

Example:
#List with 5 elements, index ranges from 0 to (5-1)

percentages = [50.0, 100.0, 78.5, 99.9, 65.1]

Other Examples:
letters = ["A", "B", "A"]

names = ["The Borg", "Klingon ", "Hirogin", "Jem’hadar"]

Element 0 Element 1 Element n-1

0 1 2 3 4

1 These 4 names (Borg, Klingon, Hirogin, Jem’hadar)  are CBS

Analogous to creating
an ‘atomic’ variable:
num1 = 12.5
flag = True

James Tam

Accessing A List

• Because a list is composite you can access the entire list or
individual elements.

percentages = [50.0, 100.0, 78.5, 99.9, 65.1]

• Name of the list accesses the whole list
print(percentages)

• Name of the list and an index “[index]”accesses an element
print(percentages[1])

List

Elements

5/26/2021

Composites 7

James Tam

Negative Indices

• Although Python allows for negative indices (-1 last element, -2
second last…-<size>) this is unusual and this approach is not
allowed in other languages.

• So unless otherwise told your index should be a positive
integer ranging from <zero> to <list size – 1>

Creating A List (Variable Size)

• Step 1: Create a variable that refers to the list (list is empty)

• Format:
<list name> = []

• Example:
classGrades = []

5/26/2021

Composites 8

Creating A List (Variable Size: 2)

• Step 2: Initialize the list with the elements

• General format:
– Within the body of a loop create each element and then add the new

element on the end of the list (‘append’)

James Tam

Creating A Variable Sized List: Example

classGrades = []

for i in range (0, 4, 1):

Each time through the loop: create new element = -1

Add new element to the end of the list

classGrades.append(-1)

classGrades

Before loop
(empty list)

classGrades

i = 0

[0] -1

classGrades

i = 1

[0] -1
[1] -1

classGrades

i = 3

[0]

[1]

[2]

-1

-1

-1
[3] -1

classGrades

i = 2

[0]

[1]

[2]

-1

-1

-1

5/26/2021

Composites 9

Revised Version Using A List

•Name of the example program: 1classListV2.py
– Learning: an alternative implementation that illustrates the advantages

of using a list. Can access individual elements as well as the entire list.

CLASS_SIZE = 5

def initialize():

classGrades = []

for i in range (0, CLASS_SIZE, 1):

classGrades.append(-1)

return(classGrades)

Revised Version Using A List (2)
def read(classGrades):

total = 0

average = 0

for i in range (0, CLASS_SIZE, 1):

temp = i + 1

print("Enter grade for student no.", temp, ":")

classGrades[i] = float(input (">"))

total = total + classGrades[i]

average = total / CLASS_SIZE

return(classGrades, average)

classGrades

[0]

[1]

[2]

-1

-1

-1

[3] -1
[4] -1

After ‘initialize’: before loop

i = 0

temp 1

average

0total

0

Current grade
i = 1

100100

100

2

80

80 180
i = 2

3

50

230

i = 3

4

70

50

70

300

i = 4

5

100

100

400

Loop ends now (Recall:
CLASS_SIZE = 5)80

5/26/2021

Composites 10

James Tam

Revised Version Using A List (3)

def display(classGrades, average):

print()

print("GRADES")

print("The average grade is %0.2f%%" %(average))

for i in range (0, CLASS_SIZE, 1):

temp = i + 1

print("Student No. %d: %0.2f%%"

%(temp,classGrades[i]))

James Tam

Revised Version Using A List (4)

def start():

classGrades = initialize()

classGrades, average = read(classGrades)

display(classGrades,average)

start()

5/26/2021

Composites 11

One Part Of The Previous Example Was Actually
Unneeded

def read(classGrades):

: :

return(classGrades, average)

When list is passed

as a parameter…

…returning the list is likely not

needed

More details on ‘why’ coming up shortly!

James Tam

Passing A List As A Parameter

• A reference to the list is passed, in the function a local
variable which is another reference can allow access to the
list.

• Example:
def read(classGrades):

...

for i in range (0, CLASS_SIZE, 1):

temp = i + 1

print("Enter grade for student no.", temp, ":")

classGrades[i] = float(input (">"))

total = total + classGrades[i]

def start():

classGrades = initialize()

read(classGrades)

5/26/2021

Composites 12

James Tam

Example: Passing Lists As Parameters

• Name of the example program:
2listParametersPassByReference.py

– Learning : a list parameter allows changes to the original list (persist
even after the function ends).

def fun1(aListCopy):

aListCopy[0] = aListCopy[0] * 2

aListCopy[1] = aListCopy[1] * 2

return(aListCopy)

def fun2(aListCopy):

aListCopy[0] = aListCopy[0] * 2

aListCopy[1] = aListCopy[1] * 2

James Tam

Example: Passing Lists As Parameters (2)

def start():

aList = [2,4]

print("Original list in start() before function

calls:\t", end="")

print(aList)

aList = fun1(aList)

print("Original list in start() after calling fun1():\t",

end="")

print(aList)

fun2(aList)

print("Original list in start() after calling fun2():\t",

end="")

print(aList)

start()

5/26/2021

Composites 13

James Tam

Passing References (Lists): “Pass-By-Reference”

• Recall: A list variable is actually just a reference to a list.
aList = [1,2,3]

• A copy of the address is passed into the function.
def fun(copyList):

copyList[0] = 10

• The local reference ‘refers’ to the original list (thus the term
‘pass-by-reference).

The list (no name just
a location in memory)

Reference to the list
(contains the memory
address)

James Tam

Passing References: Don’t Do This

• When passing parameters never (or at least almost never)
assign a new value to the reference.

• Example

def fun(aReference):

Don’t do, creates a new list

aReference = [3,2,1]

def start():

aReference = [1,2,3]

fun(aReference)

print(aReference)

• Recall: This creates a new list
aList = []

5/26/2021

Composites 14

James Tam

Passing Parameters Which Aren’t Lists (Pass By Value)

• A copy of the value stored in the variable is passed into the
function.

• Changes made to the parameters are only made to local
variables.

• The changed local variables must have their values back to the
caller in order to be retained.

Example: Passing By Value

• Name of the example program:
3otherParametersPassByValue.py

– Learning: how simple types (integer, float, Boolean) are passed by value
(value copied into a local variable)

def fun1(aNum,aBool):

aNum = 21

aBool = False

print("In fun1:", aNum,aBool)

def fun2(aNum,aBool):

aNum = 21

aBool = False

print("In fun2:", aNum,aBool)

return(aNum,aBool)

5/26/2021

Composites 15

James Tam

Example: Passing By Value (2)

def start():

aNum = 12

aBool = True

print("In start:", aNum,aBool)

fun1(aNum,aBool)

print("After fun1:", aNum,aBool)

aNum,aBool = fun2(aNum,aBool)

print("After fun2:", aNum,aBool)

start()

James Tam

Why Are References Used?

• It looks complex

• Most important reason why it’s done: efficiency
– Since a reference to a list contains the address of the list it allows access

to the list.

– As mentioned if the list is large and a function is called many times the
allocation (creation) and de-allocation (destruction/freeing up memory
for the list) can reduce program efficiency.

• Type size of references ~range 32 bits (4 bytes) to 64 bits (8
bytes)

• Contrast this with the size of a list
– E.g., a list that refers to online user accounts (each account is a list

element that may be multi-Giga bytes in size). Contrast passing an 8
byte reference to the list vs. passing a multi-Gigabyte list.

5/26/2021

Composites 16

James Tam

“Simulation”: What If A List And Not A List Reference
Passed: Creating A New List Each Function Call

• Name of example program: 4listExampleSlow.py
– Learning: approximating the speed difference between passing by value

vs. passing by reference (simulated pass by value)

MAX = 1000000

def fun(i):

print("Number of times function has been called %d" %(i))

aList = []

for j in range (0,MAX,1):

aList.append(str(j))

def start():

for i in range (0,MAX,1):

fun(i)

start()

James Tam

Passing Reference And Not Entire List

• Name of example program: 5listExampleFast.py
– Learning: approximating the speed difference between passing by value

vs. passing by reference (actual pass by reference)

MAX = 1000000

def fun(aList,num):

print("fun #%d" %num)

def start():

list = []

for i in range(0,MAX,1):

list.append(i)

for i in range(0,MAX,1):

fun(list,i)start()

5/26/2021

Composites 17

After This Section You Should Now Know

• The difference between a simple vs. a composite type

• Why and when a list should be used

• How to create and initialize a list (fixed and dynamic size)

• How to access or change the elements of a list

• The difference between the parameter passing mechanisms:
pass by value vs. pass by reference

• How are lists passed as parameters

