Charles Babbage

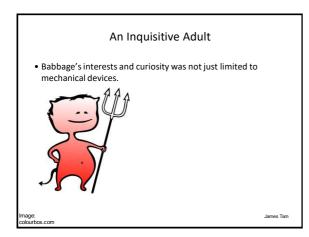

A brief introduction about the life of Charles Babbage and his machines: The Difference and Analytic Engine

James Tarr

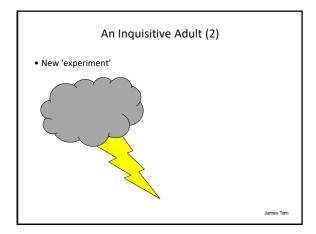
Charles Babbage (1791 – 1871)

- Considered by many to be the grandfather of the computer age (Williams).
- The technology of the day was primitive.
- But his ideas were advanced (~1940s).
- The speed of his devices matched technology decades into the future
- Zuse and Aitken machines

James Tam

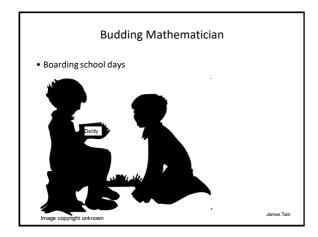


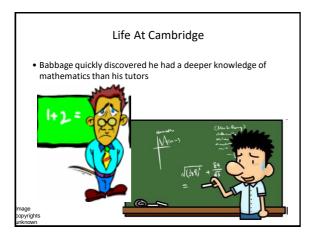
Research

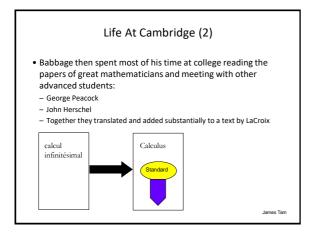

• Babbage was a very active (and eclectic!) researcher and he published papers in the following fields:

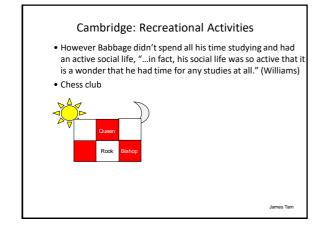
James Tarr

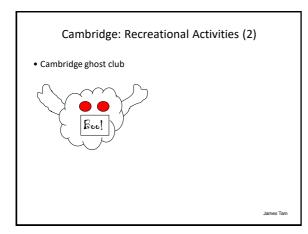
- Optics
- Atmospheric observations
- Electricity and magnetism
- The operation of life insurance companies
- Cryptography
- Geology
- Metal working
- Taxation systems
- The design of light houses
- The operation of light houses



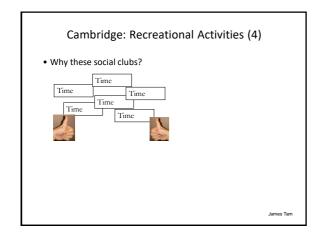


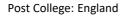



Preparation For College


- Babbage's father decided that his son should attend Cambridge.
- The father hired a tutor to prepare Babbage for what to expect in college.

Cambridge: Recreational Activities (3)

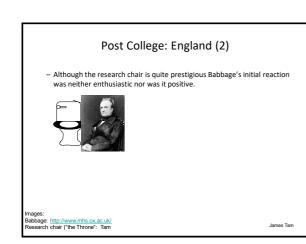

• Extractors club


Rules from "History of Computing Technology" (Williams)

- Évery member must communicate his address to the Secretary at lest once every six months.
- If this communication was delayed beyond 12 months, it would be taken for granted that his relatives had shut him up as insane.
- Évery effort legal and illegal shall be made to get him out of the madhouse (hence the name "extractors").
- Évery candidate for admission shall produce six certificates to be kept on file

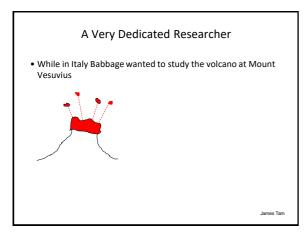
 three that he is same and three that he is not.

James Tam



- Although brilliant Babbage did not receive recognition when studying at Cambridge.
- He unsuccessfully sought lectureship appointments at universities (it's who you know rather than what you know or what you can do).
- Later in life Babbage was elected as the Lucasian Professor of Mathematics in Cambridge

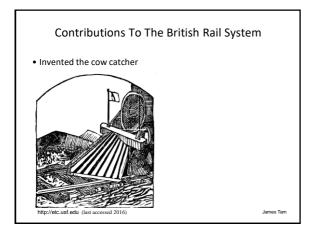
James Tarr


- (Outstanding chair holders)
- Isaac Newton: 1669
- Charles Babbage: 1828
- Stephen Hawking: 1979

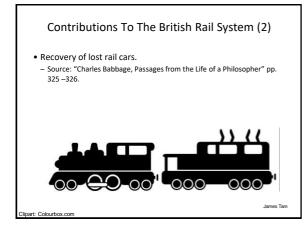
Post College: Continental Europe

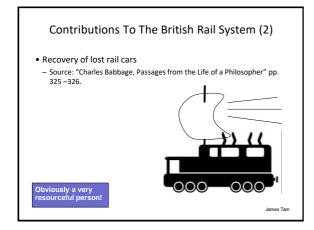
• Babbage was well known and respected in the rest of Europe.

- Elected as a member to at least 15 European scientific societies
- He was even named commander of the Italian Order of: Saint Maurice and Saint Lazarus.

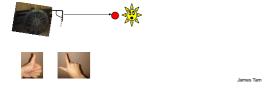


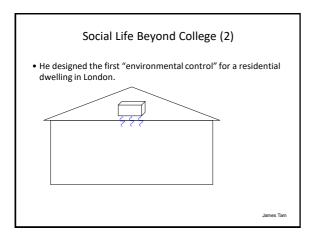
Contributions To Logarithms


- In 1826 he published his own set of logarithms (by far the most accurate published up to that date).
- He improved on the accuracy but he was a perfectionist and wanted to reduce the chances of misreading the information so he experimented with different:
- Tried many typefaces to improve readability and to decrease the probability of an error.
- Paper colors (151!)
- Colors of ink (13)
- Babbage was beyond thorough!

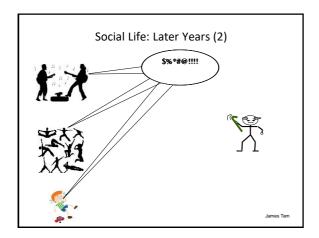

James Tam

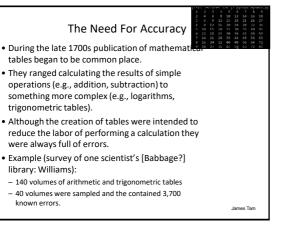
James Tam

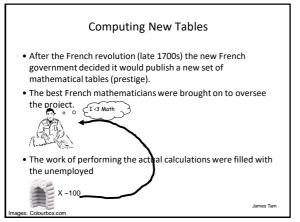




Social Life Beyond College


- He still maintained an active social life.
- Babbage was a well known member of London society (he was eagerly sought after by the London elite).
- He often had to turn down invitations (multiple).
- Guests were always treated displays of scientific or technical terms.





CPSC 409: Charles Babbage and the Babbage machines

CPSC 409:Analog devices

Computing New Tables (2)

- To ensure accuracy numbers were computed at least twice.
- To prevent collaboration between the groups performing the calculations, each group was located in different locations scattered across France.
- But even with all of the time and effort employed the tables still contained errors.
- Sometimes tables of errata were published afterwards.
 However sometimes the second table contained more errors than the original table it was intended to correct! (Williams)

James Tarr

Computing New Tables (3)

• Some of the errors were introduced during type setting.

- To a large extend this is why Babbage was so meticulous
 Tried many typefaces to improve readability and to decrease the probability of
- Internamy typeraces to improve readability and to decrease the probability of an error.
 Paper colors (151!)
- Paper colors (151
 Colors of ink (13)
- The tables completed by Babbage in 1827 were the most accurate set of tables produced up to that time.
- Only 40 errors (out of ? Volumes)

Computing New Tables (4)

- Other sets of tables published around that time were not nearly as accurate:
- Dr. Hutton's famous tables 1781 contained 40 errors on a single page.
 The Nautical Ephemeris for Finding Latitude and Longitude at Sea contained over 1,000 errors.
- The only fool-proof method of preventing errors was to remove people entirely from the task of producing the calculations and substitute them with some sort of mechanical device.

James Tarr

Using Differences

- It was once the main tool used by the makers of mathematical tables.
- Replaces more complex operations such as multiplication with additions and subtractions.
- Example (from Williams): Evaluating f(x) = 2X + 3

	=	1		2		3
F(x)	=	5		7		9
Differences	=		2		2	

Using Differences: 2 ND Difference												
• $f(x) = x^2$												
х	=	1		2		3		4				
F(x)	=	1		4		9		16				
1 st diff	=		3		5		7					
2 nd diff	=			2		2		2				
								James Tam				

Difference Engine

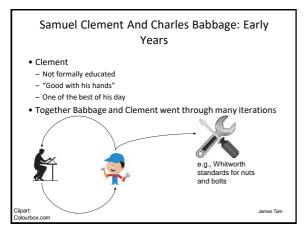
- A computing device that is able to employ the property of differences to compute a sequence of numbers.
- Mr. E. Klipstein (Frankfurt 1786 "Description of a Newly Invented Calculating Machine [Translated title]") included the first reference to such a device.
- Klipstein provided a description of such a computing device in the book.
 In the appendix written by the (Hessian) Engineering Captain J.H. Muller, he indicates that he designed some sort of Difference Engine.
- Muller describes an even more ambitious computing device if only \$\$\$ were available.
- Klipstein: publishing, Muller: creation of the device but didn't produce a publication.

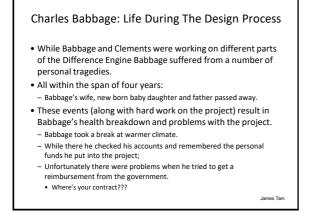
James Tarr

Babbage's Difference Engine: Motivations

- As noted Babbage had an intense obsession for completeness and accuracy.
- One of his goals was to produce a more accurate series of mathematical tables.
- (Recall: even with a great deal of care and duplication taken to produce the tables that errors would inevitably occur so the goal was to remove the person – the source of the errors – entirely from the process).
- The idea of a Difference Engine first came to Babbage in 1812 or 1813 (student at Cambridge).

James Tarr


Babbage's Difference Engine: Motivations (2)


- In the early 1820s after his experience at publishing tables of logarithms Babbage was again spurred to design a machine that would automatically produce these values.
- "Being of moderate independent means" (Williams) Babbage managed to produce a working model by 1822.
- It could work with 6 figure numbers.
- It could evaluate a polynomial function having a constant second difference.
- 44 calculations per minute
- To generate additional funding and support Babbage wrote the president of the Royal Society
 - The Royal Society of London for Improving Natural Knowledge ("Royal Society")

Babbage's Difference Engine: Motivations (3)

- The Royal Society supported Babbage's project and sent a letter of support to the Lords of the Treasury.
- Note: the support was not unanimous (Dr. Young: felt that the money would be better spent on investments and using the proceeds to fund more human calculators).
- The government provided some start up funds 1,500 pounds (~\$7,500).
- Babbage made up the difference ~3,400 pounds himself ("I'll get it back!")
- Unfortunately Babbage soon discovered that there can be a significant difference between making a demonstration prototype and a fully working model.
- Fortunately Babbage was able to obtain the services of Samuel Clement.

James Tam

CPSC 409: Charles Babbage and the Babbage machines

CPSC 409: Analog devices

Charles Babbage: Life During The Design Process (2)

- Finally after personal appeals from Babbage's friends the project was advanced an additional 1,500 pounds.
- After another personal appeal from a very influential friend (The Duke of Wellington) the project was advanced another 3,000 pounds with a suggestion that Babbage show evidence of his progress.
- Unfortunately the financial and health problems would often significantly delay work on the project.

James Tarr

Samuel Clement And Charles Babbage: Later Years

- Babbage would normally travel across London when he needed to visit Clement's workshop.
- To facilitate work on the project Babbage built a new (fire proof) house that was closer.
- He expected Clement to join him at the new location but Clement refused and eventually the two had a falling out.
 Unfortunately British law favored Clemet's position
- During this dispute work on the Difference Machine was halted
- The one positive: Babbage conceived of another machine (Analytical Engine: more later) during this time

James Tam

Babbage: Later Years

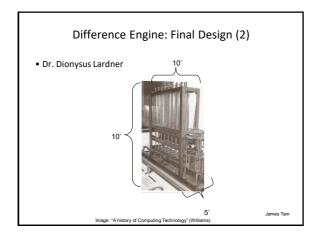
- Finally Babbage determined that it would be more efficient (i.e., cheaper) to start building a new machine with a different design than complete the original design.
- This announcement was not well received by the government.
- While the officials deliberated the current government lost it's majority position.
- Babbage had to start dealing a whole new group of officials.Finally Babbage tired of the process and asked the Prime
- Minister to make a decision on the fate the project.
- Unfortunately the decision (1842) wasn't favorable for Babbage
- Maybe the Difference Engine should be used to compute the cost of producing the Difference Engine. – Paraphrasing a member of Parliament

Babbage: Later Years (2)

- Eventually the machine itself was donated to a museum.

Ironically after abandoning Babbage's work:
 Only a few years later the British government financed the production of a Difference Engine designed in Sweden.

James Tarr


Difference Engine (Cost)

- Government portion:
- 17,000 pounds (\$84,000) 1842 currency values
- Babbage's portion:
- 20,000 pounds (\$100,000) 1842 currency values

James Tarr

Difference Engine: Final Design

- The final machine wasn't complete (parts of it now at South Kensington Science Museum).
- "Baggage's description of the machine are difficult to follow" (Williams).
- Also the descriptions were extensive (1000 square feet of paper).

Optional External Video:

• Demonstrating the operation of the Difference Engine and stories about the life of Babbage

 If you don't want to watch the whole video at least check it out 1:38 to see the intricate and complex mechanisms in operation.

- https://www.youtube.com/watch?v=BlbQsKpq3Ak

James Tam

The Scheutz Difference Engine #1

James Tam

- George Scheutz: A Swede worked as an editor of a Stockholm technical journal.
 He read an article by Dr. Dionysus Larder describing
- He read an article by Dr. Dionysus Larder describing Babbage's machine.
- He quickly realized the Difference Engine would be beneficial to most every branch of science and began work.
- He developed a 'proof of concept' components using wood, plasterboard (drywall) and wire.
- His son Edvard returned from England in 1837 and began work an actual working machine (metal).
- By Oct 1837 father and son realized the financial costs of the project was beyond their means.
- They petitioned the Swedish government for financial support but were unsuccessful.

ge: www.atariarchives.net

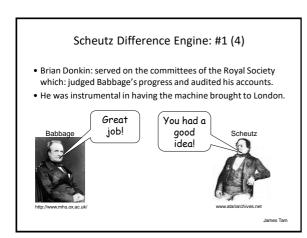
The Scheutz Difference Engine #1 (2)

- The Scheutz's proceeded with the funds they had available.
- 1840:
- Compute to the first difference 5 digit numbers
- 1842:
- Extended the machine to compute to third order of difference
- 1843:
- Printing device attached
- Submitted to Royal Swedish Academy of Science
- Well received but accolades were not backed by \$\$\$
- · It only remained a conversation piece for the next few years
- 1851:

At the prompting of friends George Scheutz again petitioned the government for funding
After a fairly long and complex process

Scheutz Difference Engine #1 (3)

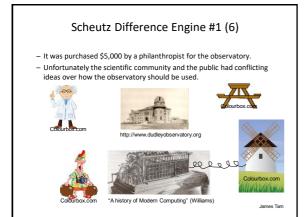
• 1853:

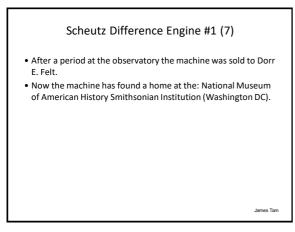

- The "Tabulating machine" was completed
- It was regarded as being so successful that a second grant (equal to the first) was recommended (and given!)

"A history of Modern Computing" (Williams)

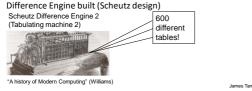
This version of Difference Engine attained many 'firsts'

James Tam




Scheutz Difference Engine: #1 (5)

- After it's demonstration in London the Tabulating machine was shown to the scientific community (with the hope of finding a buyer).
- In Paris it won the Exhibition's Gold Medal (Great Exhibition)
- The award brought the machine to the attention of B.A. Gould (Dudley Observatory: New York).


James Tarr

Scheutz Difference Engine #2

- The British Register (~Statistics Canada) General wanted to publish new tables for the insurance industry.
- The tables could be easily be approximated by certain functions (polynomials).
- This lead to the decision to use a Difference Engine in the calculations.
- The Register General paid 1,200 pounds (\$6,000) to have a

Other Difference Engines: Decon

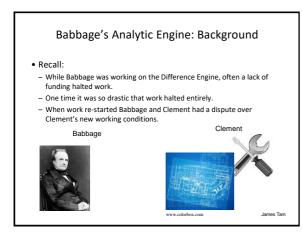
- Alfred Decon (London)
- Much like Scheutz he was inspired by Lardner's description of Babbage's work.
- He constructed a partially working model (now lost)
- It could calculate functions up to 3 orders of differences with numbers up to 20 digits.
- It was meant to be a demonstration model rather than something to be used for actual work (there was no printout of results).
 He build the machine for his own satisfaction or also for the amusement of his
- friends.
- In the end it was either sold or given to Babbage (he owned a similar machine but it wasn't clear if it was the Decon model).

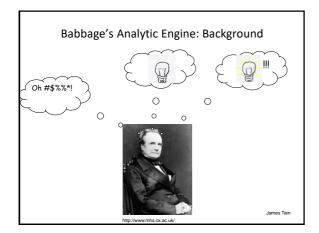
James Tam

Other Difference Engines: Wiberg

- Martin Wiberg: produced a redesign of the Scheutz machine (reduced size and weight).
 - The machine was used in the production of tables that calculated interest (published in 1860).
 - A table of logarithms and trigonometric values were calculated and printed by the machine (published in 1875).
- Eventually the machine ended up at the Academy of Science (Paris).

Other Difference Engines: Grant


- Mr. G.B. Grant (founder of American gear cutting industry)
- With the help of his professors and Mr. J.N. Bachelder (Dudley Observatory) was able to design and build a small prototype model.
- Grant was given a grant (University of Pennsylvania) for \$10,000 to build a working model for the university.
- The design was sold to the Provident Mutual Life Insurance company where it was used to produce tables similar to those produced by the Office of the Registrar General in Britain.
- Eventually given to the American Smithsonian (according to records it was somehow lost)


James Tarr

Other Difference Engines: National/Comrie

- Dr. L. J. Comrie (Nautical Almanac Office) produced a machine that proved almost 100 years after Babbage's failure (1900s)
- Included a 12 column keyboard.
- That feature, along with other features made the machine useful proving that an efficient, inexpensive Difference Engine was at last available.

James Tar

Babbage's Analytic Engine: Significance

- The Difference Engine was an important step in the development of computation.
- The Analytic Engine ushered in an entirely new and critical concept: a computing machine that was a controlled by an external program. ("A programmable device!")

James Tan

Babbage's Analytic Engine

- It's difficult to determine the exact operation of the Analytic Engine:
 - Not completed (re-created from complex diagrams)
- Many iterations continuously produced (right up to Babbage's passing)
- A re-creation (based on the snapshot of the original machine in 1840) was produced under the direction of Major-General H.P. Babbage (1906) the son of Charles Babbage.

Components Of The Analytic Engine

Store

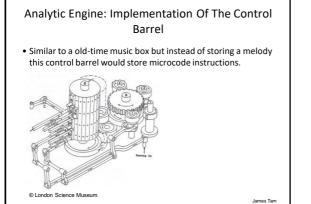
- Mill
- Control Barrel
- Counter Mechanism

Analytic Engine: Implementation Of The Store

- Information was stored in registers in the form of gears.
- Each gear was used to represent a single digit and it could rotate to 10 different positions .
- Different source writings specified different storage capacities: – Source 1: 100 forty digit numbers.
- Source 2: 1000 fifty digit numbers.

James Tarr

James Tam


Analytic Engine: Implementation Of The Mill

- An extremely complex arrangement of gears and linkages between the gears was employed.
- Operations:1

 4 basic mathematical operations (addition, subtraction, multiplication, division), logical comparisons with the option of square roots.

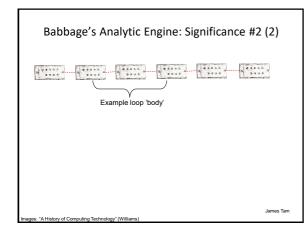
- To understand the relationship between the mill and store a weaving metaphor may be used.¹
- Store: the location where numbers are held (value stored = a pattern in the cloth).
- Mill: the location where numbers are 'woven' into their new patterns based upon the operation to be performed.

1 Source: https://turing.plymouth.edu/~zshen/Webfiles/notes/CSDI1400/note2.pdf

Babbage's Analytic Engine: Significance #1

- Babbage merely conceived of the Analytic Engine as an academic exercise rather than having the goal of producing a model to be used to solve actual problems.
- Significance (Metrics from Williams): Speed/advanced technology
- Although slow by today's standards the Analytic Engine was far in advance of it's time.
- Addition time, Analytic Engine: (3 seconds, 1 second with later version, ~1830- 1871)
- Addition time, Harvard Mark I: 0.3 second ~World War II (1939 1945)

James Tarr


James Tarr


Babbage's Analytic Engine: Significance #2
Significance: it included the concept of a stored program
Instructions for the Analytic Engine were to be stored on a sequence of punched cards.

CPSC 409: Charles Babbage and the Babbage machines

"A History of Computing Tech

logy" ('

Did Babbage Ever Build An Analytic Engine?

- He viewed the design process as an academic exercise.
- Some parts were created as part of an experiment but he never built a complete machine.
- Major Henry P. Babbage (son) completed the construction of a Mill in 1906.
- It calculated and printed many different multiples of PI to 29 decimal places as a proof of concept.
- The mill now resides in the Science museum (London) along with some other early Babbage machines.

James Tam

Ada Augusta Countess Of Lovelace

- Daughter of Lord Byron (yes it's the famous poet!) and Annabella Milbanke (a trained mathematician!)
- Lovelace became friends with Babbage
- While in Italy Babbage wrote a description of the inner workings of the Analytic Engine (Italian).
- Lovelace produced an English translation (added extensive explanations).
- She also conceived of using the Analytic Engine for purposes other than just calculating numbers.
- Abstract symbols = general instructions

Optional External Video:

• Ada Lovelace Biography, her contributions to computing and her relationship with Babbage.

https://www.youtube.com/watch?v=1kLsW0NLs08

James Tam

Percy Ludgate (1883 – 1922)

- Designed (and may have constructed) his own version of an Analytic Engine (1908).
- The unit was controlled by instructions on paper tape.
 Control could also occur from instructions entered on a special keyboard.
- It could store 192 variables that were 20 digits long..
- Like Babbage's machine it was entirely mechanical however the mechanism was powered by an electric motor.
- "Unfortunately all of Ludgate's drawings and manuscripts appear to have vanished forever." (Williams: Scientific Proceedings of the Royal Dublin Society)

James Tarr

After This Section You Should Know

- Who was considered to be the grandfather of the computer age and why
- Details about the background life of Babbage (early years, time at Cambridge and after)
- What was Babbage's contribution to calculus and who were the co-contributors
- Babbage's contribution to the production of logarithmic tables
- Babbage's other contributions and inventions: British Rail
- system
 The motivator for Babbage to produce a calculating machine
- How/when mathematical differences were used to generate results with the Difference Engine

After This Section You Should Know (2)

- Details about pre-Babbage Difference Engines and details in the development of the Babbage Difference Engine
- Some of the challenges experienced by Babbage when producing his Difference Engine
- Details about the Scheutz difference engine (tabulating machine)
- who produce it
- how was it developed
- what was its eventual fate
- Details about the Scheutz difference engine (tabulating machine 2)
- what motivated its creation
- how was it used

James Tam

After This Section You Should Know (3)

- Details about the Decon Difference Engine – what were its capabilities
- what its eventual fate
- The significance of the National/Comrie Difference Engine
- How work on the Analytic Engine came out of some of the challenges experienced while developing the Difference Engine
- What was the purpose of the Analytic Engine and when was it designed
- The significance of the Analytic Engine
- What was Ada Lovelace's relationship with Babbage and the work on the Analytic Engine
- Who was the person who designed/developed a version of the Analytic Engine James Tam