
11/21/2020

VBA programming: Part III 1

VBA Programming & Data Visualization: Part 1

• Integrating VBA Word programs with other
Office applications

• Implementing VBA in other Office applications
(Excel, PowerPoint)

Applying Many Of The Previous Concepts In A Practical
Example & Linking Documents

• As you are aware different programs serve different purposes:
– Database: storing and retrieving information

– Spreadsheet: performing calculations, displaying graphical views of
results

– Word processor: creating text documents with many features for
formatting and laying out text

• VBA allows the output of one program to become the input of
another program.
– Although this can be done ‘manually’ (reading the documents and typing

in changes) if the dataset is large this can be a tedious and error-prone
process

• Copy-pasting may alleviate some of these issues but it isn’t always an option.

– VBA can be used to automate the process

11/21/2020

VBA programming: Part III 2

Accessing Other Office Applications With A
Word VBA Program

Example Problem

• Financial statements (monetary data) about many companies
can be stored in a spreadsheet where an analysis can be
performed e.g. does the company have enough $$$ on hand to
meet its financial commitments.

• This information can be read into a VBA program which can
further evaluate the data.

• The results can be presented in Word using the numerous text
formatting features to highlight pertinent financial
information.

• Names of the documents used in this example:
– FNCE.xlsx (contains the financial data: program input)

– 1spreadSheetAnalyzer.docm (contains the VBA program as well as
the presentation of results: program output)

11/21/2020

VBA programming: Part III 3

Spread Sheet Analyzer

Sub spreadsheetAnalyzer()
Const MIN_INCOME = 250
Const MIN_RATIO = 25

Const PERCENT = 100
Dim company1 As String
Dim income1 As Long
Dim ratio1 As Long
Dim company2 As String
Dim income2 As Long
Dim ratio2 As Long
Dim company3 As String
Dim income3 As Long
Dim ratio3 As Long
Dim comment1 As String
Dim comment2 As String
Dim comment3 As String

TAMCO: 33%

HAL: Net income $250

PEAR COMPUTER: Net income $9000, 901% <== BUY THIS!

Spread Sheet Analyzer (2)

Dim excel As Object

Set excel = CreateObject("excel.application")

excel.Visible = True

Dim workbook As Variant

Dim location As String

location = InputBox("Path and name of spreadsheet e.g.

C:\Temp\FNCE.xlsx")

Set workbook = excel.workbooks.Open(location)

Object =
Type for any MS-Office variable
https://msdn.microsoft.com/

11/21/2020

VBA programming: Part III 4

Spread Sheet Analyzer (2)

Dim excel As Object

Set excel = CreateObject("excel.application")

excel.Visible = True

Dim workbook

Dim location As String

location = InputBox("Path and name of spreadsheet e.g.

C:\Temp\FNCE.xlsx")

Set workbook = excel.workbooks.Open(location)

Object =
Type for any MS-Office variable
https://msdn.microsoft.com/

Spread Sheet Analyzer (3)

' Get company names

company1 = excel.Range("A1").Value

company2 = excel.Range("A5").Value

company3 = excel.Range("A9").Value

' Get net income and ratio

income1 = excel.Range("C3").Value

ratio1 = excel.Range("D3").Value * PERCENT

income2 = excel.Range("C7").Value

ratio2 = excel.Range("D7").Value * PERCENT

income3 = excel.Range("C11").Value

ratio3 = excel.Range("D11").Value * PERCENT

' Move the selection to the top of the Word document

Selection.HomeKey Unit:=wdStory

11/21/2020

VBA programming: Part III 5

Spread Sheet Analyzer (4): First Company

comment1 = company1 & ": "
If (income1 >= MIN_INCOME) Then

comment1 = comment1 & "Net income $" & income1
Selection.Font.Color = wdColorRed
Selection.TypeText (comment1)
If (ratio1 >= MIN_RATIO) Then

comment1 = ", " & ratio1 & "% <== BUY THIS!"
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment1)

End If
Selection.TypeText (vbCr)

Else
If (ratio1 >= MIN_RATIO) Then

comment1 = comment1 & ratio1 & "%" & vbCr
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment1)

End If
End If

TAMCO: 33%

25

250

Spread Sheet Analyzer (5): Second Company

comment2 = company2 & ": "
If (income2 >= MIN_INCOME) Then

comment2 = comment2 & "Net income $" & income2
Selection.Font.Color = wdColorRed
Selection.TypeText (comment2)
If (ratio2 >= MIN_RATIO) Then

comment2 = ", " & ratio2 & "% <== BUY THIS!"
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment2)

End If
Selection.TypeText (vbCr)

Else
If (ratio2 >= MIN_RATIO) Then

comment2 = comment2 & ratio2 & "%" & vbCr
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment2)

End If
End If

HAL: Net income $250

250

25

11/21/2020

VBA programming: Part III 6

Spread Sheet Analyzer (6): Third Company

comment3 = company3 & ": "
If (income3 >= MIN_INCOME) Then

comment3 = comment3 & "Net income $" & income3
Selection.Font.Color = wdColorRed
Selection.TypeText (comment3)
If (ratio3 >= MIN_RATIO) Then

comment3 = ", " & ratio3 & "% <== BUY THIS!"
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment3)

End If
Selection.TypeText (vbCr)

Else
If (ratio3 >= MIN_RATIO) Then

comment3 = comment3 & ratio3 & "%" & vbCr
Selection.Font.Color = wdColorBlue
Selection.TypeText (comment3)

End If
End If

PEAR COMPUTER: Net income $9000, 901% <== BUY THIS!

250

25

Writing A VBA Program Using Excel And
PowerPoint

11/21/2020

VBA programming: Part III 7

Writing VBA Programs For Other Office Applications

• The following is only a brief introduction.
– (More comprehensive practical examples could take up most or all of the

curriculum of an entire course).

• Examples in this section will include VBA programs for:
– MS-Excel

– MS-PowerPoint

– Unlike the previous example which was developed within Word and
accessed an Excel document these examples are written specifically
within and for Excel and PowerPoint

– Programs other than MS-Office applications (e.g. AutoCAD) can have a
VBA application written to augment them as long as they purchased a
license to do so from Microsoft:

• https://news.microsoft.com/1999/09/30/microsoft-announces-corporate-
licensing-for-visual-basic-for-applications/

• (Online tutorials can be found).

Accessing The VBA Programming Feature

• Similar to Word you can write programs for Excel or
PowerPoint via the ‘View’ tab in the Ribbon.

• Alternatively if you’ve customized the Ribbon to add the
‘Developer’ tab then you access the basic and other
programming capabilities here as well.

https://news.microsoft.com/1999/09/30/microsoft-announces-corporate-licensing-for-visual-basic-for-applications/

11/21/2020

VBA programming: Part III 8

Accessing/Modifying Cell Data

• You can use either of the following objects: Cells or Range.

• JT’s rules of thumb regarding when to use each one:
– Cells:

•Modifying or accessing a single cell

•Accessing cells via an integer loop control

– Range: allows access/modifications to a range of cells (although a single
cell option is possible)

Accessing Cell Data

– Using the Cells attribute1:

• Format:

Cells(<row index>, <column index>)

• Example:

Cells(row, column) 'row, column are integer variables ‘long’

• Because ‘Cells’ provides access via integer values if you are accessing an Excel
spreadsheet using a loop then this method is likely the easiest approach to use.

– Using the Range object2:

• Format:

Range(<Cell>)

Range(<Start cell>:<End cell>)

• Examples:

Range(A3)

Range(B10:J15)

Range(sCell & ":" & eCell) 'sCell, eCell are string variables

1 For more information: https://docs.microsoft.com/en-us/office/vba/api/excel.worksheet.cells

2 For more information: https://docs.microsoft.com/en-us/office/vba/api/Excel.Range(object)

11/21/2020

VBA programming: Part III 9

Modifying Cell Data

– Using the Cells method:

• Format:

Cells(<row index>, <column index>) = <expression>

• Example:

Cells(1, 2) = $1000000 '649 Lottery winner!

– Using the Range method:

• Format:

Range(<Cell>) = <expression>

'Multi-range assignment: all cells are assigned the same value

'(what the expression evaluates to).

Range(<Start cell>:<End cell>) = <expression>

• Examples:

'COURSE_NAME_NUMBER a predefined named constant

Range(COURSE_NAME_NUMBER) = "CPSC 203"

'startCell, endCell, newData: predefined string variables

Range(Range(startCell & ":" & endCell) = newData)

First Excel VBA Example: Accessing/Modifying Cells

• Name of the spreadsheet that contains the VBA example:
Excel1_accessing_modifying_cell_data.xlsm (Regular
spreadsheet = .xlsx)

– Learning objective: simple example getting/setting cell values (range of
cells using the Range method).

Sub accessingModifyingCellsV1()

MsgBox (Range("A1"))

MsgBox (Cells(1, 1))

Range("A1:B1") = "change1"

MsgBox (Range("A1"))

Cells(1, 2) = "change2"

MsgBox (Cells(1, 2))

End Sub

11/21/2020

VBA programming: Part III 10

Second Excel VBA Example: Accessing Cells Based On
The Contents Of Variables

• Name of the spreadsheet that contains the VBA example:
Excel2_accessing_modifying_cell_data_via_variables_name
d_constants

– Learning objective: getting/setting cell values based on the contents of
variables, user input. Applying good style conventions by using named
constants to access cells.

– (See above spreadsheet for the full example)

Const ID_COLUMN As Long = 1

Const START_ROW As Long = 4

Const END_ROW As Long = 9

i = START_ROW

Do While (i <= END_ROW)

Cells(i, ID_COLUMN) = i

i = i + 1

Loop

Second Excel VBA Example: Accessing Cells Based On
The Contents Of Variables (2)

row = InputBox("Row to modify (e.g. 1,2,3...): ")

column = InputBox("Column to modify (e.g. 1,2,3...): ")

newData = InputBox("Contents for Cell (row/column): (" & _

row & "/" & row & ")")

Cells(row, column) = newData

startCell = InputBox("Start to modify (e.g. A1): ")

endCell = InputBox("End to modify (e.g. E3): ")

Range(startCell & ":" & endCell) = newData

11/21/2020

VBA programming: Part III 11

Formatting Spreadsheet Cells In VBA

• It can be done by via the Font object (attribute of the Cells,
Range object).
– Format :

Cells(<row>, <column>).Font.<attribute> = <value>

Range(<Cell range>).Font.<attribute> = <value>

– Examples :

Cells(10, 200).Font.Bold = True

Range("B1").Name = "Arial"

1 For more information about the Font attributes and methods: https://docs.microsoft.com/en-us/office/vba/api/excel.font(object)

Third Excel VBA Example: Changing Fonts &
Formatting

• Name of the spreadsheet that contains the VBA example:
Excel3_formatting_cells

– Learning objective: Changing the font and font properties of Excel
spreadsheet text.

– (See above spreadsheet for the full example)

Range("A1").Font.Bold = True

Range("A1:B5").Font.Color = vbRed

Cells(1, 3).Font.Bold = True

Cells(1, 3).Font.Name = "Wing dings"

11/21/2020

VBA programming: Part III 12

Accessing A Specific Worksheet (Using An Index)

• Similar to writing VBA programs for Word, if a specific
worksheet is not specified then the currently active worksheet
will have the instructions of program applied to it.
– Previous programs.

• Access to individual sheets: use the Worksheets collection.
– Format (via index):

Worksheets(<index>)

Worksheets(<index>)

Example (via index):

Worksheets(1)

Worksheets(2)

Accessing A Specific Worksheet (Using The Name)

– Format (via worksheet name):

Worksheets(<"Worksheet name">)

Worksheets("Sheet1")

– Example (via worksheet name):

Worksheets("CPSC 203 grades")

Worksheets("Sheet1")

11/21/2020

VBA programming: Part III 13

Accessing Specific Spreadsheets (Workbooks)

• You can access individual workbooks (spreadsheets) via the
Workbooks collection (similar to the Documents collection
used in VBA for Word)
– Example, number of open spreadsheets:
Application.Workbooks.Count

Fourth Excel VBA Example: Accessing Specific
Worksheets

• Name of the spreadsheet that contains the VBA example:
Excel4_specifying_a_worksheet

– Learning objective: accessing specific worksheets

– (See above spreadsheet for the full example)

Worksheets("Grade sheet").Cells(1, 1) = "A"

Worksheets("Sheet1").Cells(2, 2).Font.Bold = True

Worksheets("Sheet1").Range("C5") = "adsdadfads"

'Grade sheet2 = Worksheet(2)

Worksheets(2).Cells(2, 6) = "worksheet 1 via Cells"

Worksheets(1).Range("B2") = "worksheet 2 via Range"

11/21/2020

VBA programming: Part III 14

(To Allow You To Review Afterward)

• Before • After

VBA Example For PowerPoint

• Name of the PowerPoint document that contains the VBA
example: PowerPoint1_inserting_slides.pptm (Regular

PowerPoint = .pptx)

• Functionality:
– Prompts the user for the number of slides to insert

– The new slides will be inserted immediately after the current content (a
single slide that is a ‘title’ slide).

• Even numbered slides will have a ‘title’ field (ppLayoutCustom)

•Odd numbered slides will be completely blank (ppLayoutBlank)

11/21/2020

VBA programming: Part III 15

VBA Example For PowerPoint (2)

Sub powerPointExample()

Dim numSlides As Long

Dim i As Long

numSlides = InputBox("Number of slides to insert: ")

VBA Example For PowerPoint (3)

i = 1

Do While (i <= numSlides)

If ((i Mod 2) = 0) Then 'Even

ActivePresentation.Slides.Add _

Index:=ActivePresentation.Slides.Count + 1, _

Layout:=ppLayoutCustom

Else 'Odd

ActivePresentation.Slides.Add _

Index:=ActivePresentation.Slides.Count + 1, _

Layout:=ppLayoutBlank

End If

i = i + 1

Loop

11/21/2020

VBA programming: Part III 16

After This Section You Should Now Know How To:

• Access other types of MS-Office programs with an VBA
program written for Word.

• Access & modify cell contents via the Range and Cells objects.

• Change fonts and font effects in a spreadsheet.

• Access specific worksheets through the name and through the
index

• Create a simple MS-PowerPoint VBA Program.

Images

• “Unless otherwise indicated, all images were produced by
James Tam

slide 32

